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Abstract

This report presents a detailed multi-methods comparison of the spatial er-
rors associated with finite difference, finite element and finite volume semi-
discretizations of the scalar advection-diffusion equation. The errors are re-
ported in terms of non-dimensional phase and group speeds, discrete diffusiv-
ity, artificial diffusivity, and grid-induced anisotropy. It is demonstrated that
Fourier analysis (aka von Neumann analysis) provides an automatic process
for separating the spectral behavior of the discrete advective operator into its
symmetric dissipative and skew-symmetric advective components. Further
it is demonstrated that streamline upwind Petrov-Galerkin and its control-
volume finite element analogue, streamline upwind control-volume, produce
both an artificial diffusivity and an artificial phase speed in addition to the
usual semi-discrete artifacts observed in the discrete phase speed, group speed
and diffusivity. For each of the numerical methods considered, asymptotic
truncation error and resolution estimates are presented for the limiting cases
of pure advection and pure diffusion. The Galerkin finite element method

1Keywords and Phrases: Advection-diffusion, phase error, dispersion, discrete diffusiv-
ity, artificial viscosity

3



and its streamline upwind derivatives are shown to exhibit super-convergent
behavior in terms of phase and group speed when a consistent mass matrix is
used in the formulation. In contrast, the CVFEM method and its streamline
upwind derivatives yield strictly second-order behavior. While this work can
only be considered a first step in a comprehensive multi-methods analysis and
comparison, it serves to identify some of the relative strengths and weaknesses
of multiple numerical methods in a common mathematical framework.
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Executive Summary

In recent years, there has been a significant shift toward simulation-based
design and away from test-based design and development procedures. As
a consequence, the accuracy with which numerical methods can simulate
physical processes such as fluid flow and material deformation has become the
topic of a great deal of speculation and debate. The fact that there are a large
number of competing numerical methods (and zealots for these methods) has
only served to obfuscate an already confusing picture of numerical methods
and their true abilities to simulate complex physical phenomena.
In order to understand the differences between numerical methods, a di-

rect side-by-side comparison of each method on a select number of problems is
possible, but the investment in manpower to effect such a comparison is pro-
hibitive. There are also deep questions surrounding the choice of comparison
problems and the scientific implications (or lack thereof) of such compar-
isons. This is further complicated by differences in formulations, i.e., some
methods are based on Taylor series, while most weighted residual methods
(e.g., finite element methods) are not subservient to Taylor series.
In the work reported here, we use a generalized Fourier analysis to place

all methods on an equal theoretical footing to perform a comparison that is
independent of Taylor series, specific error norms, choices in grids, and data
smoothness. This effort constitutes a first step in a multi-methods compari-
son, and is intended to identify some of the relative strengths and weaknesses
of multiple numerical methods in the context of time-dependent advection-
diffusion. This problem class was selected because it represents a fundamen-
tal building-block required to assemble more complicated solution methods
for nonlinear problems such as high-Reynolds number, time-dependent, vis-
cous flow.
The results of this first step show that:

• There are a number of competing methods that are all of second-order
accuracy or better and that should perform adequately in the hands
of an experienced analyst. However, the grid resolution requirements
to attain a certain level of error among these methods can be vastly
different.

• There is no single best method, but there are at least two methods that
are clearly the worst. The first-order upwind method is excessively dif-
fusive, while the second-order upwind method is extremely dispersive –
of which both results are well known to experienced numerical analysts.

• The Galerkin finite element method and its streamline-upwind deriva-
tives exhibit remarkable super-convergent behavior in terms of phase
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and group accuracy, i.e., the ability to accurately propagate waves at
the correct speed and in the correct direction.

• Analysis of several control-volume finite element methods and their
streamline-upwind derivatives revealed that their behavior is strictly
second-order resulting in more than double the resolution requirements
of the finite element method for an equivalent 1% error in phase and
group speed.

The work presented here will permit other analyses and comparisons that
we have not carried out. In addition, we hope that this work will be useful
in a number of ways – a few of which are outlined here.

• In the selection of numerical solution methods based on specific desired
performance characteristics, e.g., non-dispersive, high-phase accuracy,
or minimal dissipation, this report may be used as a reference for a
wide variety of methods.

• The results found here may also be used to understand the benefits of
certain formulation aspects, e.g., the spatial coupling of time deriva-
tives that yields super-convergent phase and group accuracy, which will
hopefully yield refined numerical methods.

• For the analyst performing computations, the results found here may
be used as a guide in determining bounding limits on the grid res-
olution required to obtain an accurate solution, i.e., calculating grid
budgets. Resolution requirements from 1-D analyses are provided; the
2-D dispersion formulae could also be used to compute full 2-D grid
resolution requirements in terms of wavenumber and flow orientation.
Alternatively, the 1-D estimates may be used to bound both 2-D and
3-D grid resolution requirements for a desired accuracy.

• For developers of sub-grid scale models, the spectral characterization of
phase and group errors as well as artificial diffusivity will hopefully lead
to the understanding that connecting such models at the 2∆x limit, i.e.,
the Nyquist limit, of the grid is likely to introduce significant errors.

• In terms of verification of new and existing codes, this report provides
detailed data that can be used in checking the behavior of codes, un-
derstanding and interpreting their limiting behavior, and in defining
well-designed numerical verification experiments that respect the limi-
tations of finite grid resolution.

• This report also identifies fundamental error modes, i.e., the wave-
length dependent behavior of discrete wave propagation and diffusion
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processes that are typically ignored in traditional computational model
uncertainty quantification. It is hoped that, in the future, these error
modes will be accounted for directly in uncertainty quantification since
their behavior is well characterized here.
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Chapter 1

Introduction

The evolution of numerical methods for the solution of partial differential
equations has come to the point where the end-user is faced with choosing
from a plethora of formulations, each with its own strengths and weaknesses.
A developer embarking on a new code effort is faced with choosing between
structured or unstructured methods, mesh-full or mesh-free, finite element or
finite volume. In order to understand the differences and similarities between
competing methods, an initiative to perform a multi-methods comparison
based on numerical and computational performance has been launched.

Numerical performance is a broad term, and is defined here to include the
following: truncation error, consistency and stability, rate of convergence,
and dispersive and diffusive character. In contrast, computational perfor-
mance attempts to quantify the computational efficiency, sequential scaling
(computational complexity), compatibility with unstructured grid data struc-
tures, and spatial adaptivity. Limitations in numerical methods, particularly
for computational fluid dynamics (CFD), are related to the dispersion and
dissipation introduced by the numerical scheme.

This work constitutes a first step in a multi-methods comparison, and is
intended to identify some of the relative strengths and weaknesses of multi-
ple numerical methods in the context of advective-diffusive processes. This
problem class has been selected because it constitutes the primary compo-
nent required to assemble more complicated solution methods for nonlinear
problems such as high-Reynolds number, time-dependent, viscous flow.

As the starting point for a multi-methods comparison, a generalized
Fourier analysis (also referred to as von Neumann analysis) is used to as-
sess errors in the advective phase and group speed and discrete diffusivity.
The analysis provides a convenient mechanism to identify any artificial diffu-
sivity introduced by the spatial discretization and also to quantify its spec-
tral behavior. In addition, the asymptotic behavior of the phase speed and
discrete diffusivity provide estimates of the truncation error. While a gener-
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alized Fourier analysis is considered only a starting point, it was chosen as
the starting point because it provides a suitable means for assessing multiple
numerical methods on a relatively equal theoretical footing.

For this effort, a variety of finite difference, finite volume and finite el-
ement methods are considered. Each method is considered on both one-
dimensional and two-dimensional periodic Cartesian grids. In this limit, sev-
eral of the node-centered finite volume methods yield equivalent finite differ-
ence schemes. For the ensuing analysis, attention has been restricted to the
following advective schemes: first through third-order upwind, second-order
centered, QUICK, and Fromm’s method. Here, Fromm’s method is consid-
ered in a semi-discrete form, i.e., in the limit as ∆t→ 0, for the purposes of
analysis rather than in its original fractional-step form[9]. For the finite ele-
ment methods both Galerkin (FEM) and streamline-upwind Petrov-Galerkin
(FEM-SUPG) formulations are considered. The finite volume methods in-
clude the control-volume finite element method (CVFEM) with and with-
out the stream-line upwind analogue of SUPG known as SUCV (CVFEM-
SUCV)[24, 25]. In addition, two finite volume schemes derived using least
squares gradient reconstruction (LSR) are also considered.

The results of the Fourier analysis will be used to show that 1) the ad-
vective and diffusive parts of the problem can be considered independently
except where FEM-SUPG and CVFEM-SUCV methods are concerned, 2)
Fourier analysis provides the means to automatically segregate the advective
operators into skew-symmetric (non-dissipative) and symmetric (dissipative)
components, and 3) resolution estimates for a given accuracy may be set
based on the dispersive or the diffusion errors. Ultimately, consideration of
the wavelength dependent behavior of upwind advective algorithms should
be viewed with an eye toward developing more accurate methods.

Historical Perspective

Before proceeding with a discussion of the numerical analysis, a brief histori-
cal review of investigations into the dispersive errors associated with discrete
solution methods is presented. In general, the application of discrete methods
to hyperbolic partial differential equations, e.g., pure advection, can result
in solutions that are dispersive even though the physical model for wave
propagation is non-dispersive. Dispersion errors are typically characterized
by the differences between the apparent, i.e., numerical, phase and group
speed of waves and their exact counterparts. Phase and group speed errors
represent some of the most constraining numerical errors associated with the
simulation of advection dominated processes.

In contrast to the phase speed, the group speed describes the propagation
of wave packets that are comprised of short wavelength signals modulating
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a slowly varying, longer wavelength envelope. Because the energy associated
with a wave packet travels with the packet, the group speed is often referred
to as the “energy” velocity. The group speed is also referred to as the speed
of modulation. For a non-dispersive medium the phase and group speed are
identical.

In discrete advection, the group speed may be used to study and explain
the propagation of short wavelength signals that are typically 2∆x in wave-
length where ∆x is the characteristic mesh spacing. Vichnevetsky [33, 30, 31]
has demonstrated that spurious 2∆x oscillations, that are induced by rapid
changes in mesh resolution and at physical boundaries, propagate at a group
speed associated with a 2∆x wavelength.

The accurate simulation of advection dominated processes using discrete
numerical schemes hinges upon having a clear understanding of the con-
straining numerical errors, and sufficient computational resources to effect
solutions at the requisite grid scale. Examples of this may be seen when
attempting to compute turbulent flow fields via direct numerical simulation
(DNS) or large eddy simulation (LES). Controlling the dispersive errors, i.e.,
phase speed error, to within 5% for a first-order hyperbolic equation requires
approximately 11 to 12 cells per wavelength when using traditional finite
difference or lumped-mass finite element methods (see Table 2.6.2 in Gresho
and Sani [11]). Thus, the simulation of advection dominated problems is
limited by the wavelength that the grid can accurately represent. A failure
to respect the so-called grid Nyquist limit can introduce deleterious aliasing
effects that corrupt the simulation fidelity.

In contrast to the phase and group errors, the application of a discrete
method to the diffusive side of the advection-diffusion equation results in
a discrete diffusivity that is not equivalent to the prescribed diffusivity in
the partial differential equation. The discrete diffusivity exhibits wavelength
dependent behavior, and in multiple dimensions is directionally dependent.

The use of a generalized Fourier analysis to assess dispersive and diffusive
errors is not new and has been used by numerous researchers to characterize
the performance of numerical methods. The effects of consistent, lumped and
higher-order mass matrices on the phase speed for linear and quadratic finite
elements were investigated by Belytschko and Mullen [4] for linear elastic
wave propagation in one dimension. Here, it was verified that the period
elongation errors associated with a trapezoidal rule time integrator can be
nearly matched with the leading phase errors introduced by a consistent mass
matrix. Similarly, the period shortening associated with central differences
in time can be matched with the lagging phase errors associated with mass
lumping for linear elements. This compensatory interaction between the time
integrator and mass matrix yielded the class of methods typically referred to
as “matched” methods found in many explicit solid dynamics codes today.
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Vichnevetsky et al. [36, 35, 31] have investigated the dispersive nature
of both finite difference and finite element methods for the first-order wave
equation. In Reference [34], the dispersive errors introduced by nonuniform
grid spacing and “hard” boundaries are discussed, and the possibility of using
artificial viscosity to damp short wavelength spurious waves is investigated.
Similar analysis techniques have been applied to wave propagation in periodic
domains [32]. Trefethen [28] has considered the role of group velocity in
understanding the propagation of wave packets, the generation of parasitic
waves at interfaces, and stability. Here, the influence of group velocity in two-
dimensional finite difference discretizations with uniform aspect ratio was
considered. Karni [16] has characterized the group speed errors associated
with symmetric upwind schemes for pure advection, i.e., a first order wave
equation.

Fourier analysis has also been applied to finite element discretizations in
order to understand the dispersive nature of elastic wave propagation in bars
and locking phenomena in beams [20]. This analysis technique was applied
by Park and Flaggs [21] in an effort to understand and ameliorate locking
phenomena in Co plate elements. Alvin and Park [1] have also used Fourier
analysis to tailor the frequency response of beams and bars discretized with
the finite element method.

More recently, Shakib and Hughes [23] have applied Fourier analysis to
the space-time Galerkin least-squares method for advection-diffusion prob-
lems. Harari [14] presents the phase error associated with the Galerkin least-
squares discretization for the second-order wave equation in a finite domain.
Deville and Mund [8] have used Fourier analysis to investigate the spectral
behavior of the iteration matrix for finite element preconditioning. Thomp-
son and Pinsky [27] extended the concepts of Fourier analysis in order to
treat p-version finite element discretizations. This work provides practical
guidelines for the number of elements per wavelength in terms of the spectral
order. Similarly, Grosh and Pinsky [13] have applied Fourier dispersion anal-
ysis to fluid loaded plates for structural acoustics simulations. Christon [6]
considered the influence of the finite element mass matrix on the dispersion
characteristics of second-order wave equation for acoustic fluid-structure in-
teraction. Christon and Voth [37, 7] have applied von Neumann analyses to
assess the numerical performance of reproducing kernel semi-discretizations
in one and two-dimensions and considered both hyperbolic and parabolic
partial differential equations.

In the ensuing discussion, the Formulation section presents an overview
of the generalized Fourier analysis used in this study to compute the phase
and group speed, discrete and artificial diffusivity, and truncation error for
the semi-discretizations. In the subsequent sections, the phase and group
speed, discrete diffusivity, and artificial diffusivity results are presented for
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the finite element, control-volume finite element, and finite difference/volume
semi-discretizations, in one and two dimensions, respectively. Finally, the
results of the analysis are summarized and conclusions are outlined.
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Chapter 2

Formulation Issues

The comparison of numerical methods can be based on a number of metrics
such as truncation error, rate of convergence, and dispersive and diffusive
behavior. Such a comparison between dissimilar methods is difficult because
it may not be possible to select criteria that “fairly” represent each method.
For example, the best way to compare finite difference methods that are based
on Taylor series with finite element methods that may be best represented
by errors measured in the energy norm is an open question.

As a first step in this multi-methods analysis and comparison, we chose
to apply Fourier analysis because it provides a general methodology that is
capable of analyzing multiple methods in a single mathematical framework
while providing a great deal of information and insight into each method.
In this work, we use Fourier analysis to probe the following aspects of each
method:

• numerical dispersion, i.e., phase and group velocity errors,

• apparent, i.e., discrete, diffusivities that are wavelength dependent –
spatial discretization introduces this often-ignored error, even though
many schemes are under-diffusive at short-wavelengths,

• the limiting behavior of short wavelength information for both wave
propagation and diffusion,

• the identification and characterization of artificial diffusivity introduced
via upwinding,

• grid bias errors in phase, group, discrete diffusivity and artificial diffu-
sivity, and

• asymptotic convergence properties and resolution requirements.
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Here, Fourier analysis provides the ability to identify and characterize the
artificial diffusivity of upwind methods because it automatically segregates
the discrete advection operators into symmetric and skew-symmetric parts.
In addition, this technique also provides insight into the asymptotic conver-
gence of the methods without the ambiguities associated with the choice of
a single norm for multiple methods.
Fourier analysis can be applied to spatially-discrete, temporally-discrete,

and fully-discrete (space and time are both discrete) systems. For our pur-
poses, we chose to consider the one- and two-dimensional semi-discrete equa-
tions which correspond to the fully-discrete situation in the limit as ∆t→ 0.
The analysis proceeds by choosing either an infinite computational domain
or alternatively a periodic domain. A fundamental solution to the contin-
uous problem is selected for a fixed wavenumber or wavelength and placed
on the computational domain as shown in Figure 2.1. In general, the wave
number vector k and velocity vector c need not be aligned, but to simplify
our analysis, we assume the wave vector and velocity vector are aligned.
The response of the discrete system, discretized via finite differences, finite

elements, etc., may then be computed in terms of the grid aspect ratio, mesh
resolution, wavenumber, propagation speed and direction. The response of
the discrete system is wavelength dependent, and is used to identify and
characterize the phase and group speed, discrete thermal diffusivity, artificial
diffusivity, grid bias, and asymptotic convergence rates.
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Figure 2.1: Fundamental solution with wavelength λ, propagation speed c,
wavenumber k, and propagation direction θ.
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2.1 Fourier Analysis

The starting point for the Fourier analysis is the linear advection-diffusion
equation,

∂T

∂t
+ c · ∇T = α∇2T. (2.1)

Here, T is the temperature (or any other passive scalar), c = uı̂+v̂ is the pre-
scribed advective velocity, ı̂ and ̂ are unit vectors in the x and y-coordinate
directions respectively, and α is the thermal diffusivity. The advective ve-
locity field is assumed to be div-free, i.e., ∇ · c = 0, in both the continuous
and discrete sense. For the ensuing analysis, both the advective velocity and
thermal diffusivity are constant.
The semi-discrete form of Eq. (2.1) is required for the Fourier analysis

and is written as
MṪ +A(c)T +KT = 0, (2.2)

where M is a generalized unit-mass matrix, A(c) is the advection operator,
and K is the diffusivity operator.
For a typical finite-difference method, the generalized unit-mass matrix

is simply the identity matrix, I, and K is the standard five-point difference
representation of the Laplacian operator (cf. Eq. (A.3)). For the upwind
methods, the advective operator and mass matrix vary according to the spe-
cific scheme under consideration.
For the finite element method, the generalized unit-mass matrix is

M = φMc + (1− φ)Ml, (2.3)

where Mc is the consistent mass matrix, Ml is the row-sum lumped (diago-
nal) mass matrix, and 0 ≤ φ ≤ 1. The details for obtaining the weak form of
the advection-diffusion equation and the associated mass, advection and dif-
fusion operators are well known (see for example Gresho and Sani [11]), and
are not repeated here. Appendix A lists the stencils for the various methods
analyzed in this work.

2.1.1 Preliminaries

In the ensuing analysis, a “regular” Cartesian grid is considered where the
mesh spacing in the x and y-coordinate directions is ∆x and ∆y respectively.
This is illustrated in Figure 2.2a for a five-point finite difference stencil,
Figure 2.2b for a patch of four quadrilateral finite elements, and Figure 2.2c
for control-volume finite elements. The wave propagation direction is denoted
by θ, and the nodal x and y locations are given by xm = m∆x, and yn = n∆y,
with the aspect ratio, γ = ∆y/∆x. The spatial domain is considered to be
finite with periodic boundary conditions.
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Figure 2.2: Propagation direction: (a) on a finite difference grid; (b) on a
2x2 patch of a finite element mesh; (c) on a control-volume finite element
mesh.
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By casting the semi-discrete equations on a Cartesian grid, the mass,
advection and diffusivity matrices have a banded structure where the non-
zero entries in the matrices are equal along lines parallel to the main diagonal,
i.e., they are Toeplitz matrices.
Proceeding with the analysis, we begin with a pure advection problem

where

M

{

dT

dt

}

+A(c)T = 0, (2.4)

and, consider a sinusoidal trial solution of the form

Tk,(m,n)(t) = T̂k(t) exp[ιk · x(m,n)], (2.5)

where k is the wave number vector, k = ‖k‖ is the wave number, x(m,n) =
xmı̂ + yn̂, and ι =

√
−1. Here, (m,n) corresponds to the grid location at

xm = m∆x and yn = n∆y. This is a solution to Eq. (2.4) provided that

dT̂k

dt
= Â(k)T̂k, (2.6)

where Â(k) is the symbol (also referred to as the spectrum) and is defined
here as

Â(k) =
−A(c) · exp[ιk · x(m,n)]

M · exp[ιk · x(m,n)]
, (2.7)

where A(c) and M are square matrices suitably arranged to multiply the
vector,

exp[ιk · x(m,n)] = [exp[ιk · x(1,1)], exp[ιk · x(2,1)] . . . , (2.8)

exp[ιk · x(M,1)], . . . , exp[ιk · x(1,N)], . . . , exp[ιk · x(M,N)]]
T ,

and M and N are the number of grid points in the x- and y-directions
respectively.
As noted by Vichnevetsky[33], exp[ιk · x(m,n)] are the eigenvectors of the

discrete Toeplitz operatorM−1 ·A(c), and Â(k) are the corresponding eigen-
values.
The solution to Eq. (2.4), found by direct integration, is

Tk,(m,n)(t) = T̂k(0) exp[Re(Â(k))t] exp[ι{k · x(m,n) + Im(Â(k)}t]. (2.9)

where Re(Â) is the real part of the symbol, and Im(Â) is the imaginary
part. A similar equation is true for the continuous advection equation. So,
as demonstrated by Vichnevetsky[33], the sinusoidal trial solutions, with the
proper time-dependent coefficients, are solutions to both the semi-discrete
and continuous equations. Based on this fact, the difference between the
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continuous and semi-discrete solutions may be compared one wave number at
a time in order to assess the artifacts introduced by the spatial discretization.
For the pure advection problem, there are two effects to be considered:

dissipation and dispersion. The semi-discrete solution does not decay with
time if

|T̂k(t)| = |T̂k(0)| exp[Re(Â(k))], (2.10)

which can only be true ifRe(Â(k)) = 0. In this situation, the semi-discretization
is said to be energy conserving. This is the case whenA(c) is skew-symmetric
andM is symmetric, although, it is only necessary thatA(c) be anti-symmetric
and M symmetric. In either case, when the amplitudes of the signal do not
decay with time, the semi-discretization is also referred to as neutrally dissi-
pative.
In contrast, there is amplitude decay when at least some of the real eigen-

values are negative. That is, if Re(Â(k)) ≤ 0 for all k, and Re(Â(k)) < 0
for some of k, then the amplitudes of the solution will decay in time, and
the semi-discretization is dissipative. The introduction of a non-symmetric
M can result in a scheme that is dissipative even if A(c) is skew-symmetric.
If Re(Â(k)) > 0 for some k, then the amplitudes of the signal will grow in
time, and the semi-discretization is considered to be unstable.
When Re(Âk) = 0, i.e., the discretization is energy conserving, the only

remaining numerical artifact is the difference between the speed that signals
propagate in the continuous and discrete sense. In order to assess this effect,
Eq. (2.5) is written as

Tk,(m,n)(t) = T̂k(0) exp[ιk(m∆x cos θ + n∆y sin θ + Im(Â(k) t/k)]. (2.11)

From this, the discrete, or apparent advective velocity is

c̃(k) =
Im(Â(k))

k
(2.12)

which reveals the wavenumber dependence of the discrete advective or phase
velocity. Thus, it is clear that each wavelength will propagate at its own
unique velocity on the computational grid.

2.1.2 Fourier Analysis and Truncation Error

There is a relationship between Fourier analysis and classical truncation error
analysis as pointed out by Vichnevetsky and Bowles [33] (see pp. 24-26, pp.
103-108). We repeat the salient points of this discussion here.
Given a solution to the one-dimensional continuous advection problem,

T (x, t), the truncation error may be written as

T = dTm

dt
−M−1A(c)Tm, (2.13)
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where
Tm(t) = T (xm, t), (2.14)

i.e., Tm(t) are the values of T (x, t) evaluated at the discrete points xm.
As demonstrated by Vichnevetsky and Bowles, the truncation error for

the semi-discretizations considered in this work can be generalized as

T = C∆xp

(

∂p+1T

∂xp+1

)

+H.O.T. (2.15)

where C is a constant independent of the data, grid spacing and order of
accuracy.
The direct relationship between the order of accuracy and the “flatness”

of the phase speed near k∆x = 0 may be seen by taking the Fourier transform
of the truncation error.

F(T ) = −ιω(c− c̃)T̂ (ω, t). (2.16)

From this, it can be seen that the truncation error is

c̃− c = C∆xp(ιω)p +H.O.T. (2.17)

and behaves like ωp near k∆x = 0 where p is the order of accuracy.
In the ensuing discussion, we make use of this relationship to identify the

order of accuracy for the advective and diffusive discretizations considered in
this work.

2.2 Second-Order Upwind as a Prototype

In this section, Fourier analysis is applied to a typical finite difference dis-
cretization with a second-order upwind scheme applied to the advective terms
and a second-order centered stencil applied to the diffusive terms. Follow-
ing Vichnevetsky and Bowles [33] and Mullen and Belytschko [19], a general
solution to Eq. (2.1) is developed in the following form,

T (x, y, t) = A exp[ιk(x cos θ + y sin θ)− ιωt− k2αt]. (2.18)

Here, k denotes the wave number, and ω is the circular frequency associated
with the advective solution. The wave vector is k = k cos θ ı̂+ k sin θ ̂.

Remark. The general solution in Eq. (2.18) incorporates two
fundamental solutions. The advective component of the solution
is assumed to be a plane wave propagating in the direction of
the wave vector. In contrast, the diffusive component assumes
that the continuous diffusion problem is a planar one-dimensional
problem in the direction of the wave vector.
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Now, turning to the semi-discrete case, the general solution may be writ-
ten in terms of the grid-spacing as

Tm,n(t) = A exp[ιk(m∆x cos θ + n∆y sin θ)− ιω̃t− k2α̃t], (2.19)

where ω̃ is the discrete wavelength-dependent circular frequency, α̃ is the
discrete wavelength-dependent diffusivity, and the subscript k has been sup-
pressed for notational convenience.
In the ensuing discussion, the phase speed (or advective speed) is defined

as

c =
ω

k
, (2.20)

and represents the magnitude of the phase velocity vector c which is oriented
in the direction of the wave vector k. In the continuum, the phase velocity
is simply the advective velocity. As this analysis will demonstrate, the effect
of spatial discretization is to make the discrete or apparent phase velocity a
function of both the wavenumber and the propagation direction on the grid.
That is to say, while the continuum may be non-dispersive, the spatially-
discrete representation of the continuum will be dispersive.
The group velocity, vg = vgx î + vgy ĵ, often referred to as the energy

velocity, describes how local disturbances that are modulated by a longer-
wavelength signal propagate. The group velocity is defined as

vg =
∂ω

∂kx
î+

∂ω

∂ky
ĵ, (2.21)

where, kx = k cos(θ) and ky = k sin(θ). For a non-dispersive continuum the
group velocity is simply the advective velocity, i.e., vgx = u and vgy = v. In
the discrete or dispersive case, the group velocity is not always aligned with
the wave vector, but instead has a propagation direction defined by

Θ = arctan

(

ṽgy
ṽgx

)

, (2.22)

where ṽgx = ∂ω̃/∂kx, and ṽgy = ∂ω̃/∂ky are the components of the discrete
group velocity. In the ensuing analysis it will be demonstrated that short
wavelength signals exhibit the largest errors in phase, group and propagation
direction.

2.2.1 Semi-Discrete Equations

In order to use the general solution to the advection-diffusion equation, the
complete semi-discrete finite-difference equation at node (m,n) in the pe-
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riodic grid is required. For a second-order upwind scheme with a central-
difference discretization of the diffusion, the semi-discrete equation is

Ṫm,n +
u

2∆x
{Tm−2,n − 4Tm−1,n + 3Tm,n}

+
v

2γ∆x
{Tm,n−2 − 4Tm,n−1 + 3Tm,n}

+

{

α

(γ∆x)2

}

2(γ2 + 1)Tm,n (2.23)

−
{

α

(γ∆x)2

}

{

γ2(Tm−1,n + Tm+1,n) + (Tm,n−1 + Tm,n+1)
}

= 0,

where γ = ∆y/∆x.
In terms of Eq. (2.2), here the mass matrix, M , is simply the identity

(Mm,n = 1), while the non-zero entries in the advective operators are those
associated with the advective velocity components u and v in Eq. (2.23), and
the terms in the diffusion matrix K are the penta-diagonal entries 2(γ2+1),
−γ2 and −1 with leading multiplier α/(γ∆x)2. The complete semi-discrete
nodal equation for the second-order upwind method, as well as the other
methods considered in this work, may be found in Appendix A.

2.2.2 Dispersion Relations

With the semi-discrete equation defined, attention is now turned to comput-
ing the dispersion formulae for the prototype second-order upwind finite dif-
ference scheme. With the semi-discrete nodal equation defined in Eq. (2.23)
and the general solution defined in Eq. (2.19), there are two ways of pro-
ceeding with the analysis. The first uses linear superposition to segregate the
advection and diffusion terms in Eq. (2.19). The second approach proceeds
by simply substituting the general solution, Eq. (2.19), into Eq. (2.23). As
will be demonstrated below, this approach yields real (diffusive) and imag-
inary (advective) parts, and further, segregates the advective operator into
skew-symmetric (non-dissipative) and symmetric (dissipative) components.
For this reason the second, i.e., direct substitution, approach is adopted be-
cause it permits characterization of the artificial diffusivity associated with
the semi-discrete method.

Remark. An alternative approach to the decomposition of the
advection operator into symmetric and skew-symmetric parts pro-
ceeds as follows. Given an arbitrary advection operator, A, the
symmetric (diffusive) part is Asym = 1/2(A+AT ) and the skew-
symmetric part is Askew = 1/2(A −AT ). Appendix A presents
the semi-discrete operators in a stencil format with the x and
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y-advection operators split into symmetric and skew-symmetric
components for all of the methods considered in this report.

After the direct substitution into Eq. (2.23), the result may be segregated
into its real and imaginary components yielding relationships for the discrete
circular frequency and discrete diffusivity. Making use of the fact that u =
c cos θ and v = c sin θ, the discrete circular frequency is

ω̃ =
c cos θ

2∆x
{4 sin(k∆x cos θ)− sin(2k∆x cos θ)}

+
c sin θ

2γ∆x
{4 sin(kγ∆x sin θ)− sin(2kγ∆x sin θ)} . (2.24)

Using the definition for the phase speed in Eq. (2.20), the non-dimensional
phase speed is

c̃

c
=

1

2k∆x
{cos θ[4 sin(k∆x cos θ)− sin(2k∆x cos θ)]

+
sin θ

γ
[4 sin(kγ∆x sin θ)− sin(2kγ∆x sin θ)]} . (2.25)

Figure 2.3 shows the non-dimensional phase speed as a function of non-
dimensional wavenumber (k∆x/π = 2∆x/λ) and propagation direction, θ.
The phase speed curves for θ = 0 and 90o indicate that the second-order
upwind scheme results in leading phase errors (c̃/c > 1) up to 2∆x/λ ≈
0.68 at which point the phase errors become strictly lagging (c̃/c < 1). At
θ = 0, 90o, the phase speed goes to zero at 2∆x/λ = 1 indicating that 2∆x
waves are stationary on the grid. For all other propagation directions, 2∆x
wavelengths, which correspond to the grid Nyquist limit, propagate with
finite velocity. The phase speed is a strong function of propagation angle
with the amount of variation increasing with decreasing wavelength.
Using equations (2.24) and (2.21), the components of the non-dimensional

group speed are

ṽgx
c

= cos θ {2 cos(k cos θ∆x)− cos(2k cos θ∆x)}
ṽgy
c

= sin θ {2 cos(k sin θγ∆x)− cos(2k sin θγ∆x)} . (2.26)

The components of the non-dimensional group velocity are shown in Fig-
ures 2.4 and 2.5 as functions of the non-dimensional wave number, 2∆x/λ,
and the wave-vector direction θ. The group velocity exhibits both leading and
lagging errors depending on the propagation direction and signal wavelength
– with the group velocity going to zero along the coordinate directions for sig-
nals with λ = 3.2296∆x (or 2∆x/λ = 0.6193). Along the x and y-coordinate
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Figure 2.3: Non-dimensional phase speed for the second-order up-
wind method: a) phase vs. non-dimensional wavenumber for θ =
0, 22.5, 45, 67.5, 90o, b) phase vs. non-dimensional wavenumber and prop-
agation direction (in degrees).
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directions, and at the Nyquist limit, the group velocity is negative and three
times as large as the advective velocity. This would appear to be in con-
tradiction to the phase speed plots in Figure 2.3 which indicates that 2∆x
signals are stationary. However, because the discrete advective problem is
dispersive and the phase velocity is wavelength dependent, an envelope or
wave-packet containing 2∆x information may be seen to propagate upstream
at the group speed for the 2∆x signals. That is to say, the modulated 2∆x
signals appear to move upstream even though the individual 2∆x signals are
stationary – an artifact of the discretization. Thus, we see that the the utility
of the group velocity is in understanding the propagation of short-wavelength
signals that may be generated at physical boundaries and in regions where
the mesh resolution changes rapidly (see for example Reference [30]).

In order to demonstrate the role of group velocity in understanding dis-
crete wave propagation phenomena, consider the pure advection problem in
one-dimension with the initial conditions shown in Figure 2.6a. This compu-
tation used the skew-symmetric, i.e., energy conserving, advection operator
and neglects the symmetric, i.e., diffusive, parts (cf. §A.3 for details of the
second-order upwind advective operator). Figure 2.6b and 2.6c show the
presence of a slow moving λ ≈ 3∆x signal, and a backward-propagating sig-
nal with a 2∆x wavelength. Based on Figure 2.4a (θ = 0o) and the group
velocity in Eq. (2.21), a modulated signal with wavelength λ/∆x = 3.2296
is stationary on the grid. Here, the ≈ 3∆x signal appears to move slowly
upstream (backwards) with a non-dimensional group velocity of −1/2 while
the 2∆x wave packet appears to move backwards at a group velocity of −3.
For the sake of comparison, the computation was repeated using the “full”

second-order upwind scheme including the symmetric and diffusive part of
the advective operator. The effect of the diffusive part of the advective
operator on the computations is to damp the short wavelength signals as
shown in Figure 2.7. Note the presence of a leading disturbance in both
cases is indicated by the leading phase (and group) errors for the second-
order upwind method.

As noted previously, for a non-dispersive continuum, the group speed
would correspond to the advective speed c and the propagation direction to
θ. However, in the discrete sense, both the group speed and propagation
direction vary with wavelength and wave-vector direction. The direction for
the discrete group speed Θ is shown in Figure 2.8. Here, it is seen that in
the limit as ∆x → 0, the group velocity is aligned with the wave-vector.
Similarly, for 2∆x/λ ≤ 0.6, the group velocity and wave-vector align along
θ = 0, 45, 90o. However, for the short-wavelength signals, it is clear that
the group velocity may be incorrect and oriented in the wrong direction, e.g.,
vgx = −3 and Θ = 180o for θ = 0o and 2∆x/λ = 1.0.
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Figure 2.4: Component of the group velocity in the x-coordinate direction:
a) ṽgx vs. non-dimensional wavenumber along θ = 0, 22.5, 45, 67.5, 90

o, b)
x-velocity component vs. non-dimensional wavenumber and direction (All
angles presented in degrees.)
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Figure 2.5: Component of the group velocity in the y-coordinate direction:
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Figure 2.6: Snapshots of the temperature profile for the pure advection prob-
lem calculated using the skew-symmetric second-order upwind advective op-
erator at a) t = 0, b) t = 3.75u∆t/∆x, and c) t = 7.5u∆t/∆x.
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2.2.3 Discrete Diffusivity

Turning attention to the real, i.e., diffusive term that derives from substi-
tution of the general solution into the semi-discrete equation, the apparent
diffusivity may be computed as

α =
α

(kγ∆x)2

{

2(γ2 + 1)− 2γ2 cos(k∆x cos θ)− 2 cos(kγ∆x sin θ)
}

+
c cos θ

2k2∆x
{3 + cos(2k∆x cos θ)− cos(k∆x cos θ)}

+
c sin θ

2k2γ∆x
{3 + cos(2kγ∆x sin θ)− cos(kγ∆x sin θ)} . (2.27)

The apparent diffusivity is comprised of two parts. The first part (the first
term in Eq. 2.27) is identified as the discrete diffusivity α̃, while the second
part (last two terms of the equation) derives from the specific advective
scheme and may be interpreted as an artificial diffusivity αart. Therefore,
Eq. (2.27) may be decomposed as α = α̃ + αart.
The non-dimensional discrete diffusivity is

α̃

α
=

1

(kγ∆x)2

{

2(γ2 + 1)− 2γ2 cos(k∆x cos θ)− 2 cos(kγ∆x sin θ)
}

,(2.28)

and is shown graphically in Figure 2.9. Here, the angular dependence, i.e.,
grid bias in the discrete diffusivity is apparent. The overall effect of the
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discretization scheme is to reduce the discrete diffusivity relative to the pre-
scribed physical diffusivity for all wavelengths in the spectrum. The worst-
case is seen to be at 2∆x wavelengths along the principal grid lines (x and
y-coordinate directions) where the discrete diffusivity is approximately 40%
of its true continuum value.

2.2.4 Artificial Diffusivity

The diffusive effects of the advective scheme are associated with the symmet-
ric part of the advection operator. For the second-order upwind scheme, the
symmetric part of the advection operator yields an artificial diffusivity that
is presented here in a non-dimensional form as

1

Part
e

=
1

(k∆x)2
{cos θ[3 + cos(2k∆x cos θ)− 4 cos(k∆x cos θ)]

+
sin θ

γ
[3 + cos(2kγ∆x sin θ)− 4 cos(kγ∆x sin θ)]} , (2.29)

where the Peclet number based on the artificial diffusivity, Part
e , is defined as

Part
e =

c∆x

2αart

. (2.30)

The grid Peclet number is defined as

Pe =
c∆x

2α
. (2.31)

An alternative and equivalent non-dimensional scaling for the artificial
diffusivity is based on the physical diffusivity, i.e., αart/(αPe). However, this
definition is equivalent to the scaling used in Eq. (2.29) and requires the
introduction of a physical diffusivity which need not be present in the case
of pure advection (although the artificial diffusivity will always be present).
In addition, for the limiting case of pure advection, the scaling used in Eq.
(2.30) provides an indicator of how much the discrete solution deviates from
the case when Pe →∞. In addition, this metric indicates that when artificial
diffusivity is introduced, the apparent or effective Peclet number will remain
finite – at least through a portion of the discrete spectrum.
The wavelength-dependent artificial diffusivity introduced by the second-

order upwind scheme is shown in Figure 2.10. Again, there is a significant
angular dependence, i.e., grid-bias in the artificial diffusivity. It is surprising
that the artificial diffusivity vanishes only in the limit when 2∆x/λ → 0,
i.e., in the limit of infinite wavelength signals (e.g., a constant mode) or
conversely as ∆x → 0. Along the grid-lines, θ = 0o, 90o, the maximum
value of the artificial diffusivity does not occur at the grid Nyquist limit
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Figure 2.9: Non-dimensional discrete diffusivity for the second-order up-
wind method: a) discrete diffusivity vs. non-dimensional wavenumber for
θ = 0, 22.5, 45, 67.5, 90o, b) discrete diffusivity vs. non-dimensional
wavenumber and propagation direction.
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(2∆x wavelengths), but instead appears for 2∆x/λ ≈ 0.74. In contrast,
along 45o lines, the maximum does occur at the grid Nyquist limit. This
is somewhat surprising as it would seem desirable to introduce the largest
artificial diffusivity only for the shortest wavelength signals, i.e., at the grid
Nyquist limit for all propagation directions.

2.2.5 Effects of Artificial Diffusivity

The spectral behavior of the artificial diffusivity is revealing in that it indi-
cates that the second-order upwind method introduces essentially no artificial
diffusivity at long wavelengths while introducing increasing amounts as the
wavelength is reduced. However, the spectral and directional dependence of
the artificial diffusivity does not completely explain the damping effects of
the artificial diffusivity on the temperature field.

In fact, from the results presented for the second-order upwind scheme,
there is clearly an interplay between the artificial diffusivity, phase and group
errors, and discrete diffusivity. While, it is difficult to identify an “ideal” arti-
ficial diffusivity, in our opinion, one that is active only in the high-frequency
portion of the discrete spectrum is at least desirable. We can gain some
additional insight into the effects of the artificial diffusivity on the discrete
solution by considering its effect on the quadratic temperature, QT = T 2,
where the time rate of change of QT is,

d

dt
(QT ) =

1

2

d

dt

∫

Ω
TTdΩ =

d

dt

(

1

2
T

T
MsymT

)

(2.32)

where,

Tm,n = A exp[−k2αartt] exp[−ιk(m∆x cos θ + n∆y sin θ) + ιω̃t] (2.33)

is the complex conjugate of T and Msym is the symmetric part of the mass
matrix.

Remark. The quadratic temperature is a reasonable quantity
to consider because it provides a “natural” metric for quanti-
fying the effects of artificial diffusivity. It is well-known that,
for the advection-diffusion equation, methods that conserve the
quadratic temperature generate stable ODE’s – an important fea-
ture for long-time integration. In addition, it was also demon-
strated by Lee, et al. that conservation of T 2 can be more
important than other forms of conservation where stability is
concerned[17].
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Figure 2.10: Non-dimensional artificial diffusivity for the second-order up-
wind method: a) artificial diffusivity vs. non-dimensional wavenumber for
θ = 0, 22.5, 45, 67.5, 90o, b) artificial diffusivity vs. non-dimensional
wavenumber and propagation direction.
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We can show that the quadratic temperature is impacted by the sym-
metric and skew-symmetric parts of the advective and mass operators re-
spectively (note that this is trivial if T is only real) by considering the pure
advection problem, i.e., no physical diffusivity,

MsymṪ +MskewṪ +Askew(c)T +Asym(c)T = 0. (2.34)

First, as T and T are both solutions to the semi-discrete problem, we have,

T
T
MsymṪ = −T T

MskewṪ − T
T
Askew(c)T − T

T
Asym(c)T (2.35)

and,

T TMsymṪ = −T TMskewṪ − T TAskew(c)T − T TAsym(c)T (2.36)

where the semi-discrete equation for T (T ) has been pre-multiplied by T
T

(T T ). Further, the mass matrix has been separated into skew-symmetric,
Mskew, and symmetric, Msym, parts in order to address the streamline-
upwind finite element and control-volume finite element methods. Noting
that

d

dt
(QT ) =

d

dt

(

1

2
T

T
MsymT

)

=
1

2
T

T
MsymṪ +

1

2
T TMsymṪ (2.37)

and substituting from Eqs. (2.35) and (2.36) yields,

d

dt
(QT ) = −1

2
T

T
MskewṪ −

1

2
T TMskewṪ − T

T
AsymT (2.38)

where T
T
BsymT = T TBsymT and T

T
BskewT = −T TBskewT are employed

(B is any square matrix). Clearly, the quadratic temperature involves a
complex interplay between artificial diffusivity (as it impacts T and T ), the
symmetric part of the advection operator and the skew-symmetric part of
the mass matrix.
In order to understand the effect of the artificial diffusivity on the quadratic

temperature, we consider an advective time-scale τ = ∆x/c and integrate Eq.
(2.32) with respect to time to obtain the incremental change in QT over τ ,

QTt+τ −QTt =
∫ t+τ

t

d

dt

(

1

2
T

T
MsymT

)

dt. (2.39)

Substituting the general solution and its complex conjugate, Eqs. (2.18)
and (2.33) for T and T respectively yields the quadratic temperature at some
arbitrary time, t,

QTt = A2 exp2[−k2αartt] (2.40)

×
NP
∑

m=1

NP
∑

n=1

{

exp[−ιk(xm,n cos θ + ym,n sin θ)]M
sym
m,n

}

,
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whereM sym
m,n is them

th row, nth column entry inMsym and NP is the number
of rows/columns. Note thatQT is a function both of time, t, and wavenumber
k.
In order to permit direct comparison between methods, we use the quadratic

temperature at time t to construct a non-dimensional quadratic temperature
increment over the advective time-scale τ as

∆QT =
QTt+τ −QTt

QTt

. (2.41)

In terms of this definition, it is clear that a method characterized by constant
QT (i.e. no damping of quadratic temperature) produces ∆QT = 0 while
∆QT = −1 indicates a method with complete damping of the associated
waveform in one advective time scale τ .
After substitution into Eq. (2.41) and cancellation of terms, the non-

dimensional quadratic temperature increment may be written as,

∆QT = exp2[−k2∆x2/(2Part
e )], (2.42)

where it is clear the ∆QT is dependent on wavenumber and grid spacing (as
is Part

e ). Finally, note that Eq. (2.42) is a general statement of the quadratic
temperature increment for any of the methods considered in this document.
Indeed, the only method-dependent part occurs in the artificial diffusivity
contained in Part

e .
We can now calculate the quadratic temperature increment for the second-

order upwind prototype by substituting Eq. (2.29) into Eq. (2.42) to yield,

∆QT = exp2[−{cos θ[3 + cos(2k∆x cos θ)− 4 cos(k∆x cos θ)]

+
sin θ

γ
[3 + cos(2kγ∆x sin θ)− 4 cos(kγ∆x sin θ)]} /2] (2.43)

− 1,

which, again, is a measure of the decrease in (damping of) QT over the
advective time scale, τ = ∆x/c, for the second-order upwind method.
Figure 2.11 shows ∆QT as a function of non-dimensional wavenumber for

the second-order upwind method. Here, we see modest angular dependence
in the damping properties of the method. For example, it is clear that signals
traveling along the 45o direction are completely damped in one advective time
scale τ for 2∆x/λ > 0.80 while waves traveling along the x or y-axes are
completely damped for 2∆x/λ > 0.65. Hence, for the second-order upwind
scheme, high frequency oscillations will propagate further along the θ = 0
and 90o directions than along the 45o angle before being eliminated. Note
that regardless of propagation direction, waves characterized by λ = 2∆x are
completely damped over one characteristic time-scale, τ .
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This completes the prototype analysis of the semi-discrete second-order
upwind scheme. Attention is now turned to the numerical methods compared
in this report.

2.3 Semi-Discrete Methods Analyzed in this

Work

In this work, a variety of popular finite difference, finite volume and finite
element methods are considered. The Fourier analysis used to develop the
baseline methods comparison is restricted to analysis on “regular” Carte-
sian grids – although we consider grids with non-unit aspect ratio in two-
dimensions. In the Cartesian grid setting many of the finite volume methods
considered here revert to familiar finite difference methods.

Remark. The restriction to regular grid configurations does not
restrict the application of the generalized Fourier analysis to only
grids comprised of quadrilaterals. For example, regular arrange-
ments of triangular elements may be analyzed as in Mullen and
Belytschko [19].

The family of finite volume methods considered in this work are, in gen-
eral, developed for unstructured grids using a combination of MUSCL[29]
interpolation with slope limiters and gradient reconstruction methods to
model the convection terms. Two methods of gradient reconstruction are
considered: application of the divergence theorem and an un-weighted least
squares procedure [2]. Specifically, for the model problem under scrutiny, the
finite volume methods are derived by starting with the following semi-discrete
equation,

∆x∆y
∂Ti,j

∂t
+∆yu

(

Ti+1/2,j − Ti−1/2,j

)

+∆xv
(

Ti,j+1/2 − Ti,j−1/2

)

=

α
∆y

∆x
(Ti+1,j − 2Ti,j + Ti−1,j) + α

∆x

∆y
(Ti,j+1 − 2Ti,j + Ti,j−1) . (2.44)

The various FVMs are derived by applying the generic MUSCL interpo-
lation for convective terms,

TIJ = TI +
φ

2
[(1− κ)∇TI · (rJ − rI) + κ(TJ − TI)] (2.45)

where TIJ denotes the interpolated value between grid points I and J , for
example equal to Ti+1/2,j where I = i and J = i + 1. rI is the position
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Figure 2.11: Non-dimensional quadratic temperature increment for the
second-order upwind method: a) quadratic temperature increment vs. non-
dimensional wavenumber for θ = 0, 22.5, 45, 67.5, 90o, b) quadratic temper-
ature increment vs. non-dimensional wavenumber and propagation direction.
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vector for grid point I, φ is a limiter function, which will be zero or unity in
this work. The various methods are derived for different combinations of the
parameter κ and the method of gradient reconstruction to compute ∇TI in
the interpolation formula.
For Cartesian grids, application of the divergence theorem yields a cen-

tral difference approximation for the cell gradients, which when substituted
into the MUSCL interpolant results in a variety of well-known higher order
difference methods for φ = 1: second-order central-difference (CD, κ = 1),
second-order upwind (SOU, κ = −1), Fromm [9] differencing (this is the limit
of Fromm’s fully discrete method for ∆t→ 0; κ = 0), QUICK[18] (κ = 1/2),
and a 3rd-order upwind method (TOU) also due to Leonard [18] (κ = 1/3).
We also discuss an ad-hoc method composed of CD with a finite-element
consistent mass matrix that can be derived by assuming a linear variation of
the unknown within the control volume.
We also consider two finite volume schemes derived using the unweighted

least squares reconstruction and κ = −1 and κ = 0. For convenience
we will refer to these as LSR(-1) and LSR(0) in the subsequent sections.
Note that in one space dimensional, the LSR(-1) scheme corresponds to the
second-order upwind (SOU) method, and the LSR(0) scheme corresponds to
Fromm’s method. However, in two space dimensions, this is not the case.
For the finite-element methods, we consider the well-known Galerkin finite
element method (FEM) and its streamline-upwind Petrov-Galerkin (FEM-
SUPG) derivative along with the more recently developed control volume fi-
nite element method (CVFEM) and its analogue to SUPG, known as SUCV
(CVFEM-SUCV) [24, 25].
All of the semi-discrete operators considered in this work are presented

in Appendix A.
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Chapter 3

One-Dimensional Results

In this chapter, a summary of the discrete phase speed, group speed, diffu-
sivity and artificial diffusivity is presented. The asymptotic truncation error
associated with the phase and group speed, discrete and artificial diffusivity is
presented for each method along with the resolution requirements for 5% and
1% error levels. In our opinion, errors in phase, group and discrete diffusiv-
ity of less than 5% are acceptable for many Engineering applications. In the
ensuing discussion, the numerical approximation to the physical diffusivity
α is referred to as the discrete diffusivity α̃, and the diffusivity added di-
rectly or indirectly by the advection scheme to modify the numerical scheme
is referred to as the artificial diffusivity αart. All of the results are presented
in a non-dimensional form, i.e., the phase speed (c̃/c), group speed (ṽg/c),
discrete diffusivity (α̃/α), and artificial diffusivity (1/Part

e ) are presented in
terms of the non-dimensional wave number, 2∆x/λ = k∆x/π. For simplicity,
the non-dimensional results are referred to as the phase, group, diffusivity
and artificial diffusivity.

For each numerical method, the analytical expressions for the phase and
group speed, discrete and artificial diffusivity are presented in a compact
form as an aid to understanding the results of the Fourier analysis (see Tables
3.2, 3.4, 3.6, and 3.8). In the analytic expressions for phase and group speed,
discrete and artificial diffusivity, the influence of the mass matrix in the FEM,
FEM-SUPG, CVFEM, and CVFEM-SUCV methods is expressed in terms
of the functionM(k∆x) as shown in Table 3.1. Note that the second-order
node-centered finite difference scheme with a consistent mass matrix, referred
to as the CD-Mc method in subsequent sections, is identical to the CVFEM
formulation in one-dimension – although it is node-centered. Therefore, only
the CVFEM results are presented here since the equivalent semi-discrete
operators yield identical results. In addition, for the one-dimensional results,
the second-order upwind (SOU) scheme corresponds to the LSR(-1) scheme,
and Fromm’s method to the LSR(0) scheme. For this reason, we simply
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present results for the SOU and Fromm’s methods.

As a final note, we consider errors in phase, group and diffusivity of less
than 1% to be small. For the purposes of our discussion, errors between 1%
to 5% are termed moderate while those that exceed 5% are are deemed large.
Note that this choice of error bounds is subjective, and further, depends upon
the application of interest. However, we believe that this choice is generally
appropriate for engineering calculations.

Method M(k∆x)
FEM/CVFEM – Ml 1
FEM – Mc (2 + cos (k∆x))/3
CVFEM – Mc (3 + cos (k∆x))/4

Table 3.1: Mass matrix contribution for FEM and CVFEM methods where
Ml indicates a lumped mass matrix and Mc indicates a consistent mass
matrix.

3.1 Phase Speed

The analytic expressions for the non-dimensional phase speed for all of the
semi-discrete methods considered may be found in Table 3.2. Here, the com-
pact notation for the mass matrix (see Table 3.1) is used for the FEM/CVFEM
phase speed. The FEM/CVFEM expression includes the effect of the stream-
line upwind Petrov-Galerkin formulation as indicated by the presence of the
stabilization parameter, β (see Appendix A, Eq. (A.29) ), and the Peclet
number Pe. The FEM and CVFEM phase speeds are recovered for β = 0 and
the appropriate mass matrix symbol. The phase speed formulae for second-
order central differences, the Galerkin finite element method and control-
volume finite element method may be found in Gresho and Sani [11].1 The
semi-discrete stencils for all the methods considered in this work may be
found in Appendix A.

The non-dimensional phase speed results for a variety of finite-difference
(or node-centered finite-volume) methods are presented in Figure 3.1. For
comparison, the non-dimensional phase speed for the FEM and CVFEM
methods are presented in Figures 3.2 and 3.3. The phase speed for the FEM-
SUPG and CVFEM-SUCV methods are presented for pure advection, i.e.,
when Pe →∞, in Figures 3.2 and 3.3.

1The formula in Gresho and Sani [11] for phase speed (Eq. 2.6-79) contains an obvious
typographical error in the numerator.
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Method Phase Speed (c̃/c)
FOU sin (k∆x)/k∆x
SOU [4 sin (k∆x)− sin (2k∆x)] /2k∆x
TOU [8 sin (k∆x)− sin (2k∆x)] /6k∆x
QUICK [10 sin (k∆x)− sin (2k∆x)] /8k∆x
Fromm’s [6 sin (k∆x)− sin (2k∆x)] /4k∆x
FEM / CVFEM

sin (k∆x)[M(k∆x)+β(2β+P−1
e )(1−cos (k∆x))]

k∆x(M2(k∆x)+β2sin2 (k∆x))

Table 3.2: Formulae for one-dimensional phase speed.

In the absence of phase errors, the ideal semi-discrete phase speed would
exactly replicate the continuous phase speed for the entire discrete spectrum
from the limit ∆x→ 0 to the grid Nyquist limit where 2∆x/λ = 1. However,
all of the methods considered here introduce phase errors – either lagging
or leading, with signals associated with the Nyquist limit, i.e., 2∆x wave-
lengths, being stationary. In the one-dimensional limit, the lumped mass
FEM, FDM and CVFEM schemes yield identical spatial discretizations and
non-dimensional phase speed results.

Remark. In the initial multi-methods comparison, we have not
considered the effects of ad-hoc “tricks-of-the-trade”, such as re-
duced integration for the FEM and CVFEM formulations, on the
phase and group speed, discrete and artificial diffusivity. The
interested reader may consult Gresho, et al. [10] who has consid-
ered the effects of reduced integration for the advection-diffusion
equation using a Galerkin finite element formulation.

As a reminder to the reader, recall that the first-order upwind scheme
may be decomposed into a centered second-order advection scheme with con-
comitant second-order artificial viscosity. This is reflected in Figure 3.1 by
the non-dimensional phase curve for the “Centered FDM” scheme. Both
Fromm’s method and the SOU scheme introduce leading phase error for
the mid-range wavelengths although the severe (≈ 30%) phase errors in the
mid-range of the discrete spectrum for the second-order upwind method are
significantly greater than for Fromm’s method.
In comparison to the finite difference schemes, the only finite element

formulation that yields leading phase errors as large as the second-order up-
wind FDM scheme is the FEM-SUPG method with a constant stabilization
parameter of β = 1/2 (see Figure 3.2). Of interest here is the significant
improvement in phase speed in moving from the baseline Galerkin FEM dis-
cretization using a consistent mass to the FEM-SUPG formulation with an
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Figure 3.1: Non-dimensional phase speed for a variety of finite-difference
(node-centered finite-volume) methods.

optimal stabilization parameter βopt = 1/
√
15. This value of the stabiliza-

tion parameter was shown by Raymond and Gardner [22] to annihilate all
truncation error up to sixth-order; see also Gresho and Sani [11].

The CVFEM methods considered here yield strictly lagging phase er-
ror as shown in Figure 3.3. The CVFEM-SUCV method with βopt (optimal
β for FEM-SUPG) and a consistent mass matrix yields a non-dimensional
phase speed close to the Galerkin FEM with a consistent mass matrix in the
mid-range wavelengths. Although, it will be shown that CVFEM-SUCV can-
not reproduce the fourth-order phase accuracy of the simple Galerkin FEM.
The ad-hoc application of the streamline-upwind Petrov-Galerkin formula-
tion also cannot be “tuned” to yield the high-order behavior associated with
FEM-SUPG. In fact, β = 1/2 appears to be an overall better stabilization
parameter for SUCV, albeit with noticeable lagging errors in the phase speed
thru the mid-range wavelengths of the discrete spectrum. A direct compar-
ison between the FEM-SUPG and CVFEM-SUCV methods may be seen in
Figure 3.4 where the lagging phase errors of the CVFEM-SUCV method are
evident – even for the “optimal” CVFEM-SUCV stabilization parameter,
β = 1/2.

The FEM-SUPG and CVFEM-SUCV methods exhibit a dependence on
the Peclet number as shown in Figures 3.5 and 3.6 for 1 ≤ Pe ≤ 100 and
optimal stabilization parameters – β = 1/

√
15 for FEM-SUPG and β =

1/2 for CVFEM-SUCV. Both FEM-SUPG and CVFEM-SUCV yield large
leading phase errors over 50% or more of the discrete spectrum for Pe < 5
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Figure 3.2: Non-dimensional phase speed for finite element method with a
consistent mass matrix (FEM - Mc), lumped mass (FEM - Ml), consistent
mass matrix and FEM-SUPG with βopt and β = 1/2.
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Figure 3.3: Non-dimensional phase speed for control-volume finite ele-
ment method with a consistent mass matrix (CVFEM - Mc), lumped mass
(CVFEM - Ml), consistent mass matrix and SUCV with βopt and β = 1/2.
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Figure 3.4: Non-dimensional phase speed for control-volume finite element
and finite element methods using streamline upwinding (CVFEM-SUCV and
FEM-SUPG).

suggesting that the stabilization parameter should be selected based on the
Peclet number.
The Peclet number dependence may be scaled out of the problem by

using the stabilization parameter suggested by Brooks and Hughes [5] which
in one-dimension is

τ = β
∆xξ

u
, (3.1)

where

ξ = coth (Pe)−
1

Pe

. (3.2)

Figure 3.7 shows that ξ approaches unity for large Peclet number and goes
to zero rapidly for Pe ≤ 3. Tezduyar [26] has suggested a doubly-asymptotic
approximation to ξ as a more computationally efficient alternative to Eq.
(3.2). The influence of the Peclet-number-adjusted stabilization on the phase
speed is shown in Figure 3.8 for FEM-SUPG and in Figure 3.9 for CVFEM-
SUCV. In both cases, moderate to large leading phase errors are introduced
in the mid-range of the discrete spectrum.

Asymptotic Truncation Error and Resolution Estimates

Asymptotic truncation error in phase speed can be determined by taking the
limit as k∆x→ 0 in the analytical expressions given in Table 3.2. Asymptotic
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Figure 3.5: Non-dimensional phase speed for finite element method with a
consistent mass matrix and FEM-SUPG with βopt for Pe = 1, 2, 5, 10, 100.

Pe = 1

Pe = 2

Pe = 5

Pe = 10

Pe = 100

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

c~/c

0.0 0.2 0.4 0.6 0.8 1.0

2∆x /λ

Figure 3.6: Non-dimensional phase speed for control-volume finite element
method with a consistent mass matrix and SUCV with β = 1/2 for Pe =
1, 2, 5, 10, 100.
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Doubly-Asymptotic Approximation
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Figure 3.7: Doubly-asymptotic stabilization parameter for FEM-SUPG – see
Tezduyar [26].
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Figure 3.8: Non-dimensional phase speed for the finite element method with a
consistent mass matrix and FEM-SUPG using βopt and ξ = coth (Pe)−1/Pe

for Pe = 1, 2, 5, 10, 100.
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Figure 3.9: Non-dimensional phase speed for control-volume finite element
method with a consistent mass matrix and SUCV with β = 1/2 and ξ =
coth (Pe)− 1/Pe for Pe = 1, 2, 5, 10, 100.

representations for SOU, Fromm, TOU and QUICK are given by

c̃

c
∼ 1− 1

6

n− 8
n− 2(k∆x)

2 (3.3)

for n = 4, 6, 8, and 10, respectively. These methods are 2nd-order, except
for TOU which is 4th-order (with a leading coefficient of -1/30). The asymp-
totic results for the finite-volume/finite-difference methods may be verified
by forming the Taylor series approximations for the skew-symmetric parts of
the advection operators.

Remark. The first-order upwind scheme yields a centered skew-
symmetric second-order advection operator, and consequently the
asymptotic estimate for the truncation error based on the phase
speed yields O(∆x2).

For both FEM-SUPG and CVFEM-SUCV the asymptotic representation
of the non-dimensional phase speed has the form

c̃

c
∼ 1 + g2(k∆x)

2 + g4(k∆x)
4 +O((k∆x)6). (3.4)

In the limit of pure advection, i.e., Pe →∞, g2 ≡ 0 as shown by Gresho and
Sani [11] (see Eq. (2.6-180)) for FEM-SUPG. By choosing β = 1/

√
15,

g4 =
β2

12
− 1

180
, (3.5)
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can also be made zero resulting in a 6th-order accurate method.

For SUCV g2 is independent of β, with an asymptotic representation of

c̃

c
∼ 1− 1

24
(k∆x)2 +

(

β2

8
− 7

960

)

(k∆x)4 +O((k∆x)6). (3.6)

Therefore for SUCV there is no β that will result in a higher order formula
or optimal phase speed behavior in terms of k∆x. However, a heuristically
optimal value of β = 1/2 gives a dispersion curve that approaches FEM-
SUPG (see Figures 3.6 and 3.5) although the truncation error is only O(∆x2)
and there are lagging errors in the mid-range wavelengths.

If the lumped-mass approximation is applied to either FEM-SUPG or
CVFEM-SUCV, i.e., row-sum-lumping of the original symmetric mass ma-
trix, and not the skew-symmetric portion induced by the stabilization, the
asymptotic truncation error reverts to,

c̃

c
∼ 1− 1

6
(k∆x)2 +

(

β2

4
+
1

120

)

(k∆x)4 +O((k∆x)6) (3.7)

which for β = 0 gives the formula for the centered finite difference scheme
(equivalent to lumped mass FEM and CVFEM).

In addition to the asymptotic truncation error, the phase error analysis
may be used to estimate the required resolution for a given level of “accept-
able” error. The resolution requirements for a 5% and 1% error in phase
are shown with the asymptotic truncation error estimates in Table 3.3. Es-
timates for resolution requirements for additional finite difference methods
may be found in Gresho and Sani[11] (see pg. 155). The best phase accuracy
for the least grid resolution is provided by FEM-SUPG with βopt while the
worst case is the second-order upwind method which, despite its second-order
accuracy, requires more resolution than the first-order upwind method for an
equivalent error.

Although the CVFEM variants yield competitive resolution estimates for
the 5% error, as the error bands are tightened, the CVFEM methods do not
perform as well as their FEM counterparts. This is due to the large lagging
phase error thru the midrange of the discrete spectrum (see Figure 3.3) which
results in an increase in the resolution requirement of from 3 to 5 relative
to the finite element method. Ultimately, the CVFEM-SUCV method will
require nearly an order of magnitude more resolution for the same accuracy
as the FEM-SUPG method with the optimal stabilization chosen for each
method.
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Asymptotic λ/∆x for
Method T.E. 5% Error 1% Error
FOU O(∆x2) 11.4 25.6
SOU O(∆x2) 15.8 36.2
TOU O(∆x4) 5.46 8.35
QUICK O(∆x2) 6.83 13.5
Fromm’s O(∆x2) 3.96 17.4
FEM – Mc O(∆x4) 3.93 5.61
FEM – Ml O(∆x2) 11.4 25.6
FEM - SUPG βopt O(∆x6) 2.88 4.76
FEM - SUPG β = 1/2 O(∆x4) 4.39 6.78
CVFEM – Mc O(∆x2) 6.24 13.1
CVFEM – Ml O(∆x2) 11.4 25.6
CVFEM - SUCV βopt O(∆x2) 5.71 12.8
CVFEM - SUCV β = 1/2 O(∆x2) 2.69 11.8

Table 3.3: Asymptotic estimates of truncation error and resolution require-
ments based on the phase error for pure advection. (Note that the FEM-
SUPG and CVFEM-SUCV results are presented only for a consistent mass
matrix Mc.)

3.2 Group Speed

In one-dimension, the non-dimensional group velocity is

ṽg =
∂ω̃

∂k
. (3.8)

For a non-dispersive medium, the group velocity is identical to the phase
speed. However, as already discussed, the discretization procedures consid-
ered here result in a dispersive representation of the continuum problem, i.e.,
the phase speed is a function of the wavenumber. Thus, using Eq. (2.20),
Eq. (3.8) may be written in terms of the wavelength-dependent phase speed
as

ṽg = c̃(k) + k
∂c̃

∂k
. (3.9)

Therefore, the group speed will only be identical to the phase speed, the ideal
situation, when

k
∂c̃

∂k
= 0. (3.10)

This can occur in the limit as k → 0, i.e., a constant mode, or when the slope
of the phase curve with respect to the wavenumber is zero – a situation that
we desire in the limit of k → 0.
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Indeed, methods like FEM and FEM-SUPG with a consistent mass ma-
trix and the associated higher-order phase speed accuracy do a good job of
emulating this behavior, but fail at the short wavelengths where the slope
of the phase speed curve changes rapidly as the phase speed goes to zero at
2∆x/λ = 1, the Nyquist limit. The consequence of this is reflected in the
group speed which will become large and negative at the grid Nyquist limit.
Thus, the better the phase speed behavior through the discrete spectrum,
the worse the group speed will be for 2∆x wavelengths. This is reflected
in the results that follow. The fact that these unresolvable modes disperse
rapidly from the main signal could be construed as an advantage.

The group speed results for all the methods considered here are shown
in Table 3.4. The non-dimensional group speed for all of the finite difference
methods are shown in Figure 3.10, the FEM group results are presented in
Figure 3.11 – 3.13, while those for CVFEM are presented in Figure 3.14 –
3.16.

All of the methods considered here exhibit large negative group speed
for 2∆x wavelengths. The large leading phase errors for the second-order
upwind (SOU) method are reflected in the large (relative to the other FD
methods) leading group errors and the large negative group speed at the grid
Nyquist limit. The negative group speed at the Nyquist limit is a direct
consequence of the fact that the phase speed decreases rapidly with respect
to wavenumber as the Nyquist limit (2∆x/λ is approached. Thus, for SOU,
the leading phase error in the mid-range of the discrete spectrum leads to
larger group for 0.7 ≤ 2∆x/λ ≤ 1.0 relative to the other FDM methods.
Similar effects are observed in general for the FEM and CVFEMmethods,

but are somewhat more pronounced for the consistent mass and SUPG/SUCV
variants. Again, this is due to the fact that phase speed remains faithful to
the physical phase velocity over a larger range of the discrete spectrum. For
the FEM-SUPG method with β = 1/2 for which ṽg/c = −12 for the 2∆x
wavelengths. The phase-error minimizing value of the stabilization parame-
ter, βopt = 1/

√
15 reduces this large negative group velocity at the Nyquist

limit.

Figure 3.12 shows the FEM-SUPG group speed for variable Peclet num-
ber, and Figure 3.13 shows the FEM-SUPG results using the Peclet number
adjusted stabilization parameter. The effect of the Peclet number scaling
is to reduce large negative group speed for Pe ≤ 2. Similar results for the
CVFEM and CVFEM-SUCV methods may be seen in Figures 3.14 – 3.16.

Asymptotic Truncation Error and Resolution Estimates

Asymptotic truncation error in the group speed can be determined by taking
the limit as k∆x → 0 in the analytical expressions given in Table 3.4. The
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Method Group Speed (ṽg/c)
FOU cos (k∆x)
SOU 2 cos (k∆x)− cos (2k∆x)
TOU 1

3
[4 cos (k∆x)− cos (2k∆x)]

QUICK 1
4
[5 cos (k∆x)− cos (2k∆x)]

Fromm’s 1
2
[3 cos (k∆x)− cos (2k∆x)]

FEM 3(1+2 cos (k∆x))
(2+cos (k∆x))2

FEM-SUPG
[M(k∆x)+(2β2+β/Pe)(1−cos (k∆x))]

[

4
9
+ 1

12
(7−3β2) cos (k∆x)+

(9β2
−1)

36
cos 3(k∆x)

]

(M2(k∆x)+β2sin2(k∆x))2

+
(

β
Pe
+ 2β2 − 1

3

)

sin2((k∆x))
M2(k∆x)+β2sin2(k∆x)

CVFEM 4(1+3 cos (k∆x))
(3+cos (k∆x))2

CVFEM-SUCV
[M(k∆x)+(2β2+β/Pe)(1−cos (k∆x))]

[

3
8
+

(41−16β2)
64

cos (k∆x)+
(16β2

−1)
64

cos 3(k∆x)

]

(M2(k∆x)+β2 sin2 (k∆x))2

+
(

β
Pe
+ 2β2 − 1

4

)

sin2((k∆x))
M2(k∆x)+β2 sin2 (k∆x)

Table 3.4: Formulae for one-dimensional group speed.
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Figure 3.10: Non-dimensional group speed for a variety of finite-difference
(node-centered finite-volume) methods.
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Figure 3.11: Non-dimensional group speed for finite element method using a
consistent mass matrix (FEM - Mc), lumped mass (FEM - Ml), consistent
mass matrix and SUPG with βopt and β = 1/2.
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Figure 3.12: Non-dimensional group speed for finite element method using a
consistent mass matrix and SUPG with βopt for Pe = 1, 2, 5, 10, 100.
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Figure 3.13: Non-dimensional group speed for finite element method using a
consistent mass matrix and SUPG using βopt and ξ = coth (Pe) − 1/Pe for
Pe = 1, 2, 5, 10, 100.
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Figure 3.14: Non-dimensional group speed for control-volume finite ele-
ment method using a consistent mass matrix (CVFEM - Mc), lumped mass
(CVFEM - Ml), consistent mass matrix and SUCV with βopt and β = 1/2.
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Figure 3.15: Non-dimensional group speed for control-volume finite element
method with a consistent mass matrix and SUCV with β = 1/2 for Pe =
1, 2, 5, 10, 100.
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Figure 3.16: Non-dimensional group speed for control-volume finite element
method using a consistent mass matrix and SUCV with β = 1/2 and ξ =
coth (Pe)− 1/Pe for Pe = 1, 2, 5, 10, 100.
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first and second-order upwind methods are both O(∆x2) in group speed. The
asymptotic form of the group speed for Fromm, TOU and QUICK is

vg
c
∼ 1 + 1

2

4− n

n− 1(k∆x)
2, (3.11)

for n = 3, 4 and 5, respectively. Thus, Fromm and QUICK are also second
order in group, while TOU is 4th order (with a coefficient of −1/6).
For FEM-SUPG the asymptotic group speed representation is,

vg
c
∼ 1 + 3β

2Pe

(k∆x)2 +
15β − 180β2 + 2Pe(15β

2 − 1)
72Pe

(k∆x)4. (3.12)

For βopt and infinite Pe, the group speed is 6th-order accurate – similar to
the phase speed.
For β = 0, the asymptotic representation for FEM is recovered,

vg
c
∼ 1− 1

36
(k∆x)4 , (3.13)

which is 4th-order accurate.
For SUCV the asymptotic representation is

vg
c
∼ 1 +

(

3β

2Pe

− 1
8

)

(k∆x)2 +

(

−7
192

+
5β2

8
− 5β

2

2Pe

)

(k∆x)4. (3.14)

For β = 0 the asymptotic representation of group speed for CVFEM is
recovered,

vg
c
∼ 1− 1

8
(k∆x)2 − 7

192
(k∆x)4. (3.15)

Both CVFEM and CVFEM-SUCV are second-order accurate in the group
speed.
The resolution requirements for a 5% and 1% error in group speed are

shown with the asymptotic truncation error estimates in Table 3.5. The
best group speed accuracy for the least grid resolution is provided by FEM-
SUPG with βopt while the worst case is the second-order upwind method
which, despite its second-order accuracy, requires more resolution than the
first-order upwind method. Again, the CVFEM method exhibits reasonable
resolution requirements for a 5% error in the group. However, for a 1% error,
the resolution requirements increase significantly due to lagging group speed
in the midrange of the discrete spectrum. For CVFEM-SUCV with β = 1/2,
the resolution requirements are about a factor of 4 times higher than for the
FEM-SUPG method with the optimal stabilization parameter – a factor of
16 more in three dimensions for equivalent error.
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Asymptotic λ/∆x for
Method T.E. 5% Error 1% Error
FOU O(∆x2) 19.7 44.4
SOU O(∆x2) 27.7 62.7
TOU O(∆x4) 8.29 12.6
QUICK O(∆x2) 11.2 22.9
Fromm’s O(∆x2) 11.8 30.8
FEM – Mc O(∆x4) 5.70 8.31
FEM – Ml O(∆x2) 19.7 44.4
FEM - SUPG βopt O(∆x6) 3.75 4.62
FEM - SUPG β = 1/2 O(∆x4) 6.70 10.3
CVFEM – Mc O(∆x2) 10.4 22.5
CVFEM – Ml O(∆x2) 19.7 44.4
CVFEM - SUCV βopt O(∆x2) 9.88 22.2
CVFEM - SUCV β = 1/2 O(∆x2) 3.13 21.3

Table 3.5: Asymptotic estimates of truncation error and resolution require-
ments based on the group error for pure advection.(Note that the SUPG and
SUCV results are presented only for a consistent mass matrix Mc.)

3.3 Discrete Diffusivity

Attention is now turned to the behavior of the discrete, wavelength-dependent
diffusivity. The process of discretization introduces a wavelength dependence
into the discrete thermal diffusivity even when a constant thermal diffusivity
is prescribed for the continuum. The wavelength dependent behavior of the
discrete diffusivity indicates that individual modes that comprise a temper-
ature profile will diffuse at different rates. The degree to which the rate of
diffusion varies with wavelength is a function of the method chosen.

The formulae for the non-dimensional discrete diffusivity are presented in
Table 3.6. All of the finite difference and finite volume methods use second-
order centered approximations for the diffusion operator and yield identical
discrete diffusivities as indicated by the single FDM/FVM entry in Table 3.6.
The FEM/CVFEM (β = 0) with lumped mass matrix (M(k∆x) = 1) also
revert to the FDM/FVM formula.

The non-dimensional discrete diffusivity for the FEM, CVFEM (and
FDM) methods are presented in Figure 3.17, and the results for FEM-SUPG
and CVFEM-SUCV are presented in Figure 3.18. The ideal non-dimensional
discrete diffusivity would be unity for the entire discrete wavelength spec-
trum. Thus, the deviation of the non-dimensional discrete diffusivity α̃/α
from unity may be interpreted as an error in discrete diffusivity relative to
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Method Discrete Diffusivity (α̃/α)
FDM / FVM 2 [1− cos (k∆x)] /(k∆x)2
FEM / CVFEM 2M(k∆x)(1−cos (k∆x))

(k∆x)2[M2(k∆x)+β2 sin2 (k∆x)]

Table 3.6: Formulae for one-dimensional discrete diffusivity.

the continuum value of the diffusivity.
The consistent mass FEM method (FEM-Mc) exhibits an over-diffusive

nature over the entire discrete spectrum, and the consistent mass CVFEM
method (CVFEM-Mc) is over-diffusive in the mid-range of the discrete spec-
trum. In contrast, the process of mass lumping yields discrete diffusivities for
FEM and CVFEM that are under-diffusive for all discrete wavelengths. The
FEM-SUPG and CVFEM-SUCV methods exhibit a sensitivity to the magni-
tude of the stabilization parameter, β. This demonstrates that a phase-error
minimizing optimal value of the stabilization parameter for pure advection
is not an optimal choice for thermal diffusion.
The finite volume schemes considered all share a common second-order

centered discretization representation of the diffusion term in Eq. (2.1) with
an O(∆x2) truncation error as shown in Table 3.7. In one-dimension, the
lumped-mass FEM, lumped-mass CVFEM, and node-centered finite volume
schemes all yield equivalent discrete diffusivities (Figure 3.17). Thus, the
discrete diffusivity for FOU, SOU, TOU, etc. will be the same as the lumped
mass result of Figure 3.17. Similarly, a node-centered finite volume scheme
that introduces a consistent mass matrix yields a discrete diffusivity that is
identical to the FEMmethod with a consistent mass. Note that the consistent
mass CVFEM and CFEM-SUCV (with βopt) schemes yield the least error over
the spectrum of dimensionless wave number (see Figures 3.17 and 3.18).

Asymptotic Truncation Error and Resolution Estimates

The asymptotic truncation error estimates for discrete diffusivity are summa-
rized in Table 3.7. The mass-lumped FVM (or FDM) methods considered all
share the same central difference approximation for the diffusion, resulting
in the following asymptotic representation of discrete diffusivity

α̃

α
∼ 1− 1

12
(k∆x)2 +

1

360
(k∆x)4. (3.16)

For FEM-SUPG (and FEM when β = 0), the asymptotic formula for the
discrete diffusivity is

α̃

α
∼ 1−

(

β2 − 1

12

)

(k∆x)2 +
(

β4 − 1

12
β2 +

1

360

)

(k∆x)4. (3.17)
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Figure 3.17: Non-dimensional discrete diffusivity for Galerkin finite element
(FEM) and control-volume finite element methods (CVFEM).
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Figure 3.18: Non-dimensional discrete diffusivity for FEM with SUPG and
CVFEM with SUCV.
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Asymptotic λ/∆x for
Method T.E. 5% Error 1% Error
FDM – Centered
FEM – Ml O(∆x2) 8.03 18.1
CVFEM – Ml

FEM – Mc O(∆x2) 8.19 18.2
FEM-SUPG (βopt) O(∆x2) 4.20 8.37
FEM-SUPG (β = 1/2) O(∆x2) 11.0 25.5
CVFEM – Mc O(∆x2) 5.45 12.8
CVFEM-SUCV (βopt) O(∆x2) 2.30 9.52
CVFEM-SUCV (β = 1/2) O(∆x2) 12.3 28.4

Table 3.7: Asymptotic estimates of truncation error and resolution require-
ments based on the discrete diffusivity for thermal diffusion.

For CVFEM-SUCV (and CVFEM when β = 0), the asymptotic form of
the discrete diffusivity is

α̃

α
∼ 1−

(

β2 − 1

24

)

(k∆x)2 +
(

β4 +
1

24
β2 − 7

2880

)

(k∆x)4. (3.18)

All of the finite-element based methods are 2nd-order for discrete diffu-
sivity. CVFEM has the smallest leading coefficient.
Finally, use of a lumped mass matrix (lumping the original mass matrix

only) with FEM-SUPG or CVFEM-SUCV stabilization yields the following
discrete diffusivity

α̃

α
∼ 1−

(

β2 +
1

12

)

(k∆x)2 +
(

β4 +
5

12
β2 +

1

360

)

(k∆x)4, (3.19)

which is identical to the discrete diffusivity for the centered difference method
for β = 0.
The resolution requirements for a 5% and 1% error in discrete diffusivity

are shown with the asymptotic truncation error estimates in Table 3.7. The
best diffusivity accuracy for the least grid resolution is provided by FEM-
SUPG (in term of the 1% error) with βopt. The worst accuracy is obtained
with the β = 1/2 CVFEM-SUCV formulation with more than 28 grid points
required per wavelength to yield a discrete diffusivity error of 1%. Nearly as
bad is the FEM-SUPG, β = 1/2 formulation.

3.4 Artificial Diffusivity

Artificial diffusion can be added to a method either explicitly, e.g., via an
explicit second-order or fourth-order operator, or it can be a by-product of
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Method Artificial Diffusivity ((Part
e )

−1 = 2αart/c∆x)
FOU 2[1− cos (k∆x)]/(k∆x)2
SOU [3 + cos (2k∆x)− 4 cos (k∆x)]/(k∆x)2
TOU [3 + cos (2k∆x)− 4 cos (k∆x)]/3(k∆x)2
QUICK [3 + cos (2k∆x)− 4 cos (k∆x)]/4(k∆x)2
Fromm’s [3 + cos (2k∆x)− 4 cos (k∆x)]/2(k∆x)2
FEM / CVFEM 4β[M(k∆x)(1−cos (k∆x))−sin2 (k∆x)/2]

(k∆x)2[M2(k∆x)+β2 sin2 (k∆x)]

Table 3.8: Formulae for one-dimensional artificial diffusivity.

an upwind advective discretization (e.g., first-order upwinding). Although
in general artificial diffusion is not a desirable feature of a method, it can
be useful in removing unwanted numerical artifacts such as high frequency
dispersion errors in convection-dominated problems. For hyperbolic con-
servation laws, i.e., pure advection in the context of this work, a “properly
tuned” artificial viscosity can be used to select the appropriate weak physical
solution when non-smooth data is present.
The formulae for dimensionless artificial diffusion as a function of dimen-

sionless wavenumber are shown in Table 3.8 for all the methods considered
here.2 In our opinion, an ideal artificial diffusivity should only be active in
the high-frequency, short-wavelength portion of the discrete spectrum, near
the Nyquist grid limit for example, and be negligible otherwise. In this re-
spect, Figure 3.19, which shows artificial diffusion for the FDM methods,
illustrates the well-known problem with the first-order-upwind method. It
behaves in the opposite manner to the ideal, maximizing the artificial dif-
fusion as the grid is refined (k∆x → 0). The higher order finite difference
methods approximate the desired spectral behavior, although they produce
rather large amounts of artificial diffusion even in the mid-range frequencies
when compared to the FEM-based methods shown in Figure 3.20. These
methods come closest to the ideal spectral behavior, with artificial diffusion
remaining small (relative to it’s value at the Nyquist limit) until 2∆x/λ > 0.7
permitting the signals with “good” phase behavior to survive the side-effects
of the artificial diffusivity. The central difference method, FEM, and CVFEM
contain no artificial diffusion and hence do not appear in these figures.

Asymptotic Truncation Error Estimates

The order of truncation error in the artificial diffusivity for the various meth-
ods is shown in Table 3.9. The order of truncation error indicates how quickly

2A factor of 1/2 is missing in the sin2
k∆x term in the numerator of the artificial

diffusion formula given in Gresho and Sani [11] for FEM (see Eq. 2.6-78).
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Figure 3.19: Non-dimensional artificial diffusivity for a variety of finite-
difference (node-centered finite-volume) methods.
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Figure 3.20: Non-dimensional artificial diffusivity for FEM-SUPG and
CVFEM-SUCV.
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the artificial diffusivity approaches zero as a function of the non-dimensional
wave number.
Recall that the non-dimensional artificial diffusivity may be written as

1

Part
e

=
2αart

c∆x
. (3.20)

The asymptotic representation of dimensionless artificial diffusivity for first-
order upwind (FOU) is identical to the dimensionless discrete diffusivity in
Eq. (3.16),

2αart

c∆x
∼ 1− 1

12
(k∆x)2 +

1

360
(k∆x)4. (3.21)

However, here the constant (unity) leading term in the asymptotic expansion
indicates that the artificial viscosity approaches a constant quantity indepen-
dent of k∆x. As demonstrated by the artificial viscosity results for FOU in
Figure 3.19, a fixed amount of artificial viscosity is present even in the as
∆x → 0. Thus, a first-order upwind approximation yields an inconsistent
approximation to the pure advection problem, albeit a consistent approxi-
mation for some advection-diffusion problem with finite diffusivity.
The asymptotic expansion for SOU, Fromm, TOU and QUICK is

2αart

c∆x
∼ 1
n

(

1

2
(k∆x)2 − 1

12
(k∆x)4 +

1

160
(k∆x)6

)

(3.22)

for n =1,2,3 and 4, respectively. In contrast to FOU, these methods are all
2nd-order. Recall that central difference, FEM and CVFEM introduce no
artificial diffusion. The asymptotic form for FEM-SUPG is

2αart

c∆x
∼ 4β

[

(k∆x)2

24
+
1

144

(

1− 6β2
)

(k∆x)4 +O((k∆x)6)

]

. (3.23)

Using the optimal value of β(= 1/
√
15), the formula becomes,

2αart

c∆x
=

1√
15

[

(k∆x)2

6
+
(k∆x)4

60

]

. (3.24)

For CVFEM-SUCV, the asymptotic form is

2αart

c∆x
∼ 4β

[

(k∆x)2

16
+
1

192

(

1− 12β2
)

(k∆x)4 +O((k∆x)6)

]

. (3.25)

Using β = 1/2, which is near-optimal for dispersion, the formula becomes

2αart

c∆x
=
(k∆x)2

8
− (k∆x)

4

48
(3.26)
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Asymptotic
Method T.E.
FOU O(1)
SOU O(∆x2)
TOU O(∆x2)
QUICK O(∆x2)
Fromm’s O(∆x2)
FEM - SUPG βopt O(∆x2)
FEM - SUPG β = 1/2 O(∆x2)
CVFEM - SUCV βopt O(∆x2)
CVFEM - SUCV β = 1/2 O(∆x2)

Table 3.9: Asymptotic estimates of truncation error for artificial diffusivity.

Thus, even though they are both 2nd-order, FEM-SUPG has the smaller
leading coefficient; this is reflected in Figure 3.20.

Finally, if the mass matrix is lumped in either of SUPG or SUCV prior
to applying the stabilization schemes, we get

2αart

c∆x
∼ β

2

[

(k∆x)2 −
(

1

6
+ β2

)

(k∆x)4 +O((k∆x)6)
]

. (3.27)

3.5 Effects of Artificial Diffusivity

The effect of wavenumber dependent artificial diffusivity on the quadratic
temperature, QT , is outlined in this section. Damping of quadratic temper-
ature is presented here in terms of the incremental quadratic temperature,
∆QT (as developed for the second-order upwind method). Recall ∆QT = −1
indicates that a signal is completely damped over the advective time scale,
τ = ∆x/c and is undisturbed if ∆QT = 0.

As noted above, an ideal artificial diffusivity (and hence energy damp-
ing) should only be active in the high-frequency, short-wavelength portion of
the discrete spectrum. In this respect, Figure 3.21, which shows ∆QT for
the FDM methods, illustrates that this general behavior is respected. The
higher order SOU and Fromm’s methods approximate the desired spectral
behavior, although they produce rather large amounts of damping even in the
mid-range frequencies when compared to the FEM-based methods shown in
Figure 3.22. Conversely, QUICK and TOU both perform quite well in the low
frequency range, but do not completely damp high-frequency signals (2∆x/λ
= 1) over the advective time-scale.
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Figure 3.21: Non-dimensional change in incremental quadratic temperature,
∆QT , for a variety of finite-difference (node-centered finite-volume) methods.

In contrast, The FEM-based schemes appear to be nearly ideal (relative to
the other methods presented here), with modest damping at low-frequencies,
long-wavelengths, complete damping of the high-frequency, short-wavelength
signals and a smooth transition in the mid-frequency range. Again, an assess-
ment of the “best” damping characteristics depends on the complex interplay
between artificial diffusivity, phase and group speeds.
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Figure 3.22: Non-dimensional change in incremental quadratic temperature,
∆QT , for FEM-SUPG and CVFEM-SUCV with β = βopt and 1/2.

77



78



Chapter 4

Two-Dimensional Results

This chapter presents the two-dimensional discrete phase speed, and discrete
and artificial diffusivities for the finite difference, finite volume and finite
element methods outlined in §2.3. For these methods, the effect of grid as-
pect ratio, γ = ∆y/∆x, on the noted numerical artifacts is examined for
the range of discrete dimensionless wavenumber. Metrics which provide inte-
grated (over θ and 2∆x/λ) measures of anisotropy and error are introduced
to allow for a quantitative methods comparison.
Relative to the one-dimensional results of Chapter 3, the 2-D results add

propagation direction, θ, to the parameter space. The addition of θ signif-
icantly increases the complexity of the phase speed and diffusivity results.
(The group speed direction, Θ, is also a relevant parameter, but the asso-
ciated analyses are not included here due to space limitations.) In order to
present these results, polar plots are used as shown by the representative plot
of phase speed (on a unit aspect ratio grid) in Figure 4.1.
Here, the non-dimensional phase speed, c̃/c, is associated with the radial

coordinate, and the propagation direction, θ, by the azimuthal coordinate.
Polar curves at fixed non-dimensional wavenumber are plotted with each
curve representing the dimensionless phase speed for that wavenumber. In
this work, curves at 2∆x/λ = 0, 0.2, 0.4, 0.6, 0.8 and 1.0 are plotted on
each polar plot. Figure 4.1 clearly demonstrates the anisotropic behavior
(i.e., θ dependence) of the non-dimensional phase speed as c̃/c varies with
propagation direction, θ. For this example, the anisotropy becomes more
pronounced as dimensionless wavenumber increases from 0 to 1.

4.1 Metrics

Although polar plots such as that shown in Figure 4.1 suggest the degree of
anisotropy and accuracy of an individual method, a quantitative comparison
is desired. For this reason, two metrics are introduced. The first metric is
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Figure 4.1: Non-dimensional phase speed (c̃/c; radial coordinate) as a func-
tion of θ (azimuthal coordinate).

the coefficient of variation,

ς(2∆x/λ) =
σ(2∆x/λ)

G(2∆x/λ)
, (4.1)

which provides a measure of the anisotropy of a method for a given dimen-
sionless wavenumber. In Eq. (4.1), G is a generic variable representing c̃/c,
α̃/α or 1/Part

e while,

G(2∆x/λ) =
1

2π

∫ 2π

0
G(2∆x/λ, θ)dθ (4.2)

is its mean and,

σ(2∆x/λ) =

√

1

2π

∫ 2π

0

(

G(2∆x/λ, θ)−G(2∆x/λ)
)2
dθ (4.3)

its standard deviation at some 2∆x/λ.
It is clear from Eq. (4.1) – (4.3) that an isotropic scheme yields ς(2∆x/λ) =

0 because G(2∆x/λ, θ) = G(2∆x/λ) for all θ. Similarly, large values of ς
correlate to a high degree of anisotropy so that a direct comparison between
methods can be made at a given wavelength, and between wavelengths for a
given method. For the scheme represented by Figure 4.1, ς = 0.0, 1.2×10−2,
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5.0 × 10−2, 1.3 × 10−1, 2.9 × 10−1 and 7.0 × 10−1 for 2∆x/λ = 0, 0.2, 0.4,
0.6, 0.8 and 1.0, respectively. As indicated by ς(0) and suggested by the fig-
ure, the scheme is perfectly isotropic in the limit of infinite wavelength (i.e,
2∆x/λ = 0). As wavelength decreases, the method becomes increasingly
anisotropic. At the Nyquist limit, the method demonstrates the greatest
anisotropy in this measure.
The average value of the coefficient of variation,

ς =
∫ 1

0
ς(2∆x/λ)d(2∆x/λ) (4.4)

is also employed here and provides a single number, independent of 2∆x/λ,
which may also be used for comparison of discretization schemes. Again,
a larger value of ς indicates (on average) greater anisotropy while ς = 0 is
representative of a method that is isotropic for all wavelengths.
While the ς and ς metrics provide a quantitative measure of a method’s

anisotropy in phase, and discrete and artificial diffusivity, they do not provide
a measure of the error associated with a discretization. Indeed, it is possible
for a discretization scheme to have significant error in phase or diffusivity,
while still demonstrating isotropic behavior. In the case of phase speed, this
(unlikely) result is characterized by a perfectly isotropic phase which differs
from the ideal such that c̃(2∆x/λ) = c̃(2∆x/λ, θ) 6= c. For this reason, we
introduce a second metric, the RMS error metric,

ε(2∆x/λ) =

√

1

2π

∫ 2π

0
(G(2∆x/λ, θ)− g(2∆x/λ, θ))2 dθ. (4.5)

This metric measures the azimuthal deviation of G from its true (i.e. physi-
cal) value g. In terms of dimensionless phase speed and discrete diffusivity,
g = 1. Hence, an an ideal scheme will have ε(2∆x/λ) = 0 for all wave-
lengths 0 ≤ 2∆x/λ < 1. For the scheme represented by Figure 4.1, ε = 0.0,
5.0× 10−2, 1.9× 10−1, 3.9× 10−1, 6.2× 10−1 and 8.3× 10−1 for 2∆x/λ = 0,
0.2, 0.4, 0.6, 0.8 and 1.0 respectively.
The average value of ε over 2∆x/λ,

ε =
∫ 1

0
ε(2∆x/λ)d(2∆x/λ) (4.6)

is also employed here as it provides a single error metric that facilitates
methods comparison. Larger values of ε indicate larger errors for the method.
The method of Figure 4.1 yields ε = 3.3× 10−2 in terms of phase speed.
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4.2 Phase Speed

This section begins with a presentation of the analytic expressions for the
non-dimensional phase speed for all the semi-discrete methods considered. A
summary of the phase speed results in terms of polar plots and the anisotropy
and error metrics follows. These results demonstrate the aspect ratio, wave-
length and propagation angle dependence of the individual methods and
provide a means of comparison between methods.

4.2.1 2D Phase Speed Formulae

Owing to the linear nature of the advection-diffusion equation, the trial so-
lution and the Cartesian grid, the two-dimensional dispersion formulae for
some, but not all, of the methods can be written (and, more importantly, un-
derstood) in terms of the one-dimensional formulae presented in the previous
section. This presentation of the dimensionless phase speed provides a simple
generalization with respect to the corresponding one-dimensional versions of
the phase-speed for each of the semi-discrete methods. The methods that can
be put into this form include FEM, CVFEM, CD, SOU, TOU, Fromm, and
QUICK. The phase speed for these methods can be written in the following
form,

c̃

c
= cos2 θ F 1Dc̃ (k∆x cos θ) + sin2 θ F 1Dc̃ (γk∆x sin θ), (4.7)

where F 1Dc̃ (ϑ) denotes the dimensionless phase speed formula for the corre-
sponding one-dimensional case. The one-dimensional formulae are presented
in Table 3.2, in which ϑ denotes the dimensionless wavenumber argument in
the function, k∆x. As an example, for FEM

F 1Dc̃ (ϑ) =
sin(ϑ)

ϑ

3

2 + cos(ϑ)
,

and hence the phase speed formula is (c.f. [11], Eq. (2.6-200))

c̃

c
= cos2 θ

sin(k∆x cos θ)

k∆x cos θ

3

2 + cos(k∆x cos θ)

+ sin2 θ
sin(γk∆x sin θ)

γk∆x sin θ

3

2 + cos(γk∆x sin θ)
. (4.8)

As expected, the one-dimensional formula is recovered along the coordi-
nate directions (i.e. θ = 0, π/2, π, and 3π/2), in terms of the correspond-
ing mesh increment (∆x or ∆y) for the coordinate direction. Furthermore,
for modes (and flow orientation) directed along the diagonal (θ = π/4) of
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a square grid (γ = 1), the two-dimensional formula also reverts to the one-
dimensional result, but on with an effective grid spacing of ∆xeff = ∆x

√
2/2,

c̃

c
=
sin(k∆xeff )

k∆xeff

3

2 + cos(k∆xeff )
. (4.9)

In general, the one-dimensional behavior can be expected in the phase
speed whenever tan θ = 1/γ. This occurs when the wave is propagating in a
direction normal to the diagonals of the grid. In this case ∆x cos θ = ∆y sin θ
and hence Eq. (4.7) reduces to

c̃

c
= F 1Dc̃ (k∆x cos θ). (4.10)

This is the one-dimensional phase speed on a grid with an effective spacing
of ∆x cos θ (or equivalently, an effective wavenumber).

In the results to be presented in the following discussion, the effect of this
“enhanced” resolution along the directions normal to the grid diagonals will
be realized by a reduced phase error compared to those along the coordinate
directions. As we shall see, other two dimensional dispersion quantities share
this one-dimensional result along these preferential grid orientations.

Remark. When considering grids with aspect ratios other than
unity, the appropriate Nyquist frequency of the mesh must be
based on the larger of ∆x or ∆y, i.e., the coarsest mesh spacing.
Hence, in the foregoing two-dimensional formulae, and in subse-
quent dispersion formulae, only γ ≤ 1 are valid. These formulae
may be used for γ > 1, but one must first exchange x and y and
then use our results for the inverse aspect ratio.

As suggested above, several of the methods considered cannot be writ-
ten in the form of Eq. (4.7). These include the central difference (CD) with
consistent mass (CD-Mc), the LSR schemes, SUPG, and SUCV. As we shall
show, the component functions are analogous to their one-dimensional coun-
terparts, though not the same. The component functions are composed of
products of x− and y−components of the dimensionless wavenumber.
The CD-Mc method is an ad hoc method. It can be motivated by assum-

ing linear variation of the unknown over the control volumes when developing
the time term, but uses standard CD for the advection operator. Its phase
speed is given by

c̃

c
=

16

(3 + cos θx)(3 + cos θy)

(

cos2 θ
sin θx
θx

+ sin2 θ
sin θy
θy

)

(4.11)
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where we have introduced the notation

θx = k∆x cos θ, and, θy = k∆y sin θ = γk∆x sin θ. (4.12)

This formula does not have the general form of Eq. (4.7). That is, it does not
revert to the one-dimensional formula when the wave propagation direction
is at right angles to the mesh diagonals. For the one-dimensional case (e.g.
θ = 0) the phase speed for CVFEM is recovered, as it should, since the two
methods are identical for this case. If the mass matrix is lumped, then the
leading factor on the right hand side of the two-dimensional formula is unity,
and the formula reverts to the phase speed for the CD method,

c̃

c
=

(

cos2 θ
sin θx
θx

+ sin2 θ
sin θy
θy

)

(4.13)

which of course follows the simple form of Eq. (4.7).
The phase speed for LSR(0) is given by,

c̃

c
= cos2 θ

1

12θx
[2 sin θx(7 + 2 cos θy)− sin 2θx(1 + 2 cos θy)]

+ sin2 θ
1

12θy
[2 sin θy(7 + 2 cos θx)− sin 2θy(1 + 2 cos θx)] (4.14)

This scheme also does not follow the general form of Eq. (4.7), as it contains
cross terms from the x− and y−component functions. These cross-terms
arise because the advection stencils (see Appendix A) include terms from
all neighboring grid points. This is also true for the FEM and CVFEM
operators, however the symbols factor conveniently to eliminate the cross
terms. In contrast, the FDM/FVM methods (FOU, SOU, TOU, Fromm
and QUICK), have component operators which include only terms along the
coordinate directions. Incidentally, the corresponding one-dimensional phase
speed for LSR(0) is obtained along the coordinate directions. For example,
the x−direction (θ = 0) formula is

c̃

c
=
1

4θx
(6 sin θx − sin 2θx) . (4.15)

This is the one-dimensional version of Fromm’s method.
The phase speed for LSR(-1) is:

c̃

c
= cos2 θ

1

6θx
[4(2 + cos θy) sin θx − (1 + 2 cos θy) sin 2θx]

+ sin2 θ
1

6θy
[4(2 + cos θx) sin θy − (1 + 2 cos θx) sin 2θy] (4.16)
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which also contains mixed terms in the component functions. Along the
coordinate directions (i.e. in one dimension) the phase speed is,

c̃

c
=
1

2θx
(4 sin θx − sin 2θx), (4.17)

which, incidentally, is the one-dimensional formula for SOU.
The phase speed formulae for SUPG and SUCV are given by,

c̃

c
=

(

cos2 θ G(θx) + sin2 θ G(θy)
)

[

1 + β2(θx + θy)2
(

cos2 θ G(θx) + sin2 θ G(θy)
)2
] ×

[

1 +
βθ

2

(

(

1

Pex
+ 2βθ cos

2 θ
)

F(θx) +
4 cos θ sin θ

γ
βθG(θx)G(θy)

+

(

1

Pey
+ 2βθ sin

2 θ

)

F(θy)
)]

(4.18)

where

F(ϑ) = 2(1− cosϑ)
M(ϑ)

G(ϑ) = sinϑ

ϑ

1

M(ϑ)
βθ = β(cos θ + γ sin θ)

Pex =
c∆x

2α
, Pey =

c∆y

2α
(4.19)

andM(ϑ) is the symbol for the mass matrix operator, given in Table 3.1. In
this formula, the stabilization parameter τ in Eq. (A.29) is written as

τ =
βθ∆x

c
. (4.20)

While not of the form in Eq. (4.7), the component terms in this formula
are similar to the respective one-dimensional terms in Table 3.2 and the
two-dimensional formula reverts to the one-dimensional formula along the
coordinate directions and also reverts to the FEM or CVFEM expressions
for β = 0.

4.2.2 2D Phase Speed Results

The phase speed results for our two-dimensional semi-discretizations are pre-
sented in Figures 4.2 to 4.15. Figures (a) and (b) for each semi-discretization
present c̃/c for grid aspect ratios of γ = 1 and γ = 1/2 respectively. As
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in the example polar plot (Figure 4.1) phase speed curves are plotted for
2∆x/λ = 0, 0.2, 0.4, 0.6, 0.8 and 1.0. In the absence of phase errors, the
ideal semi-discrete phase speed would exactly replicate the continuous phase
speed for the entire discrete spectrum from the limit ∆x → 0 to the grid
Nyquist limit. Hence, in the ideal case, the phase speed curves would be
circular, each giving c̃/c = 1. However, all of the methods considered here
introduce either leading or lagging phase speeds, the magnitudes of which
are dependent on wavelength, grid aspect ratio and propagation direction.

Several points regarding the semi-discretizations are noted before begin-
ning the discussion of results. First, phase speed for the FEM-SUPG (Figures
4.3 and 4.4) and CVFEM-SUCV (Figures 4.6 and 4.7) are presented for pure
advection, i.e., when Pe →∞. Second, results for the lumped mass variants
of FEM and CVFEM are not included here as their results are significantly
degraded relative to their consistent mass counterparts (see §3.1 for exam-
ples of the effects of mass lumping). Finally, the reader is reminded that
the FOU scheme may be decomposed into a centered second-order advection
scheme with concomitant second-order artificial viscosity. For this reason,
phase speed results for the FOU and “Centered FDM” scheme are identical
and so presented as one result.

Several characteristics are evident from the series of figures presented
here. First, the figures clearly indicate anisotropic wave propagation for all
schemes considered with the γ = 1/2 cases demonstrating less θ-dependence
than their γ = 1 counterparts. Indeed, the γ = 1 cases all show quarter-
symmetry while the γ = 1/2 discretizations show half-symmetry, both be-
haviors being consistent with the symmetry of their respective spatial grids.
It is also evident from the figures that this anisotropy generally increases with
increasing 2∆x/λ. This observation is demonstrated quantitatively in Tables
4.1 and 4.2 where the coefficient of variation of the phase speed, ςc̃, and its
mean ςc̃ are presented. The tables show that ςc̃ generally grows with increas-
ing 2∆x/λ. In terms of the ςc̃ metric, and relative to the grid aspect ratio,
γ = 1/2 minimizes θ-dependence for all but the LSR semi-discretizations.
Finally, it is evident from a method-to-method comparison of ςc̃ that FEM-
SUPG and CVFEM-SUCV minimize anisotropic behavior irrespective of grid
aspect ratio given the proper choice of stabilization parameter. Note that
the LSR schemes provide good isotropy for the γ = 1 case but become sig-
nificantly more anisotropic (relative to the other methods) for γ = 1/2.

The series of figures in this section also provides information concerning
the phase error of each method. As suggested by the anisotropy discussion
above, this error is dependent on wavenumber as well as propagation angle.
Indeed the methods generally demonstrate a minimum error along the θ =
π/4 and π/2 directions for the unit and 1/2 aspect ratio cases respectively.
These ‘preferential’ directions are a result of the better resolving power of the
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Figure 4.2: Non-dimensional phase speed (c̃/c; radial) as a function of θ
(azimuthal) for the consistent mass Galerkin finite element method (FEM -
Mc) with a) γ = 1 and b) γ = 1/2.

grid in these directions (cf. §4.2.1). A quantitative measure of the discrete
phase errors is presented in Tables 4.3 and 4.4. As with ςc̃, the phase errors,
εc̃, generally increase with increasing 2∆x/λ, peaking at the Nyquist limit.
In terms of the εc̃ metric, the γ = 1/2 results minimize phase errors relative
to the unit aspect ratio cases for all but the LSR cases. Finally, it is evident
from a comparison of εc̃ between methods, that FEM-SUPG and CVFEM-
SUCV minimize errors, for either γ, given the proper choice of stabilization
parameter (β = βopt and 1/2 for SUPG and SUCV respectively). Note that
FOU demonstrates by far the worst phase error (in terms of εc̃) relative to
the other semi-discretizations, regardless of aspect ratio.
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Figure 4.3: Non-dimensional phase speed (c̃/c; radial) as a function of θ
(azimuthal) for consistent mass matrix finite element method SUPG with
βopt; a) γ = 1 and b) γ = 1/2.
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Figure 4.4: Non-dimensional phase speed (c̃/c; radial) as a function of θ
(azimuthal) for consistent mass matrix finite element method SUPG with
β = 1/2; a) γ = 1 and b) γ = 1/2.
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Figure 4.5: Non-dimensional phase speed (c̃/c; radial) as a function of θ
(azimuthal) for the consistent mass control volume finite element method
(CVFEM) with a) γ = 1 and b) γ = 1/2.
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Figure 4.6: Non-dimensional phase speed (c̃/c; radial) as a function of θ
(azimuthal) for consistent mass matrix control volume finite element method
SUCV with βopt; a) γ = 1 and b) γ = 1/2.
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Figure 4.7: Non-dimensional phase speed (c̃/c; radial) as a function of θ
(azimuthal) for consistent mass matrix control volume finite element method
SUCV with β = 1/2; a) γ = 1 and b) γ = 1/2.
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Figure 4.8: Non-dimensional phase speed (c̃/c; radial) as a function of θ
(azimuthal) for the central difference method (also FOU). Results for aspect
ratios of a) γ = 1 and b) γ = 1/2 are shown.
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Figure 4.9: Non-dimensional phase speed (c̃/c; radial) as a function of θ
(azimuthal) for the consistent mass matrix central difference discretization
(CD-Mc). Results for aspect ratios of a) γ = 1 and b) γ = 1/2 are shown.
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Figure 4.10: Non-dimensional phase speed (c̃/c; radial) as a function of θ (az-
imuthal) for the second-order upwind finite difference discretization (SOU).
Results are shown for aspect ratios of a) γ = 1 and b) γ = 1/2.
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Figure 4.11: Non-dimensional phase speed (c̃/c; radial) as a function of θ
(azimuthal) for the finite difference discretization with third-order-upwind
differencing. Results for aspect ratios of a) γ = 1 and b) γ = 1/2 are shown.
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Figure 4.12: Non-dimensional phase speed (c̃/c; radial) as a function of θ
(azimuthal) for Fromm’s method. Results for a) γ = 1 and b) γ = 1/2 are
shown.
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Figure 4.13: Non-dimensional phase speed (c̃/c; radial) as a function of θ
(azimuthal) for the QUICK scheme with a) γ = 1 and b) γ = 1/2.

a)

0.0
0.2
0.4
0.6
0.8
1.0

2∆x/λ

0.00
0°

90°

180°
1.25

270°
b)

0.0
0.2
0.4
0.6
0.8
1.0

2∆x/λ

0.00
0°

90°

180°

270°

1.25

Figure 4.14: Non-dimensional phase speed (c̃/c; radial) as a function of θ
(azimuthal) for the node-centered finite volume method with least squares
gradient reconstruction (θ = 1., κ = 0) with a) γ = 1 and b) γ = 1/2.
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Figure 4.15: Non-dimensional phase speed (c̃/c; radial) as a function of θ
(azimuthal) for the node-centered finite volume method with least squares
gradient reconstruction (θ = 1., κ = -1)) with a) γ = 1 and b) γ = 1/2.
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ςc̃ as a function of
2∆x/λ

Method 0.0 0.2 0.4 0.6 0.8 1.0 ςc̃

FEM-Mc 0.0 2.43e-4 4.60e-3 3.14e-2 1.55e-1 7.45e-1 1.13e-1
SUPG βopt 0.0 9.36e-5 1.48e-3 8.64e-3 6.44e-2 6.43e-1 7.92e-2
SUPG β = 1/2 0.0 6.13e-4 8.79e-3 3.68e-2 7.56e-2 5.32e-1 7.75e-2
CVFEM-Mc 0.0 3.26e-3 1.79e-2 6.48e-2 2.11e-1 7.40e-1 1.33e-1
SUCV βopt 0.0 2.95e-3 1.27e-2 3.82e-2 1.41e-1 6.80e-1 1.07e-1
SUCV β = 1/2 0.0 2.17e-3 4.37e-3 1.77e-2 4.92e-2 5.81e-1 7.28e-2
FDM 0.0 1.19e-2 5.06e-2 1.29e-1 2.85e-1 7.00e-1 1.65e-1
FOU
FDM-Mc 0.0 1.19e-2 5.21e-2 1.38e-1 3.22e-1 7.60e-1 1.81e-1
SOU 0.0 1.72e-2 2.39e-2 3.53e-2 2.15e-1 7.72e-1 1.36e-1
TOU 0.0 1.31e-3 1.85e-2 8.22e-2 2.47e-1 7.38e-1 1.44e-1
Fromm’s 0.0 3.62e-3 5.71e-3 6.66e-2 2.36e-1 7.50e-1 1.37e-1
QUICK 0.0 3.86e-3 2.56e-2 9.16e-2 2.55e-1 7.31e-1 1.48e-1
LSR(0) 0.0 4.68e-3 8.14e-3 1.31e-2 1.12e-1 6.36e-1 9.13e-2
LSR(-1) 0.0 1.92e-2 4.81e-2 5.29e-2 2.46e-2 5.86e-1 8.75e-2

Table 4.1: Coefficient of Variation of phase speed, ςc̃, as a function of 2∆x/λ,
and its average, ςc̃, for the two-dimensional, γ = 1 semi-discretizations.
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ςc̃ as a function of
2∆x/λ

Method 0.0 0.2 0.4 0.6 0.8 1.0 ςc̃

FEM-Mc 0.0 3.11e-4 5.75e-3 3.72e-2 1.63e-1 5.30e-1 9.42e-2
SUPG βopt 0.0 3.65e-5 4.90e-4 3.81e-3 5.37e-2 4.44e-1 5.61e-2
SUPG β = 1/2 0.0 8.44e-4 1.12e-2 4.43e-2 8.85e-2 3.55e-1 6.45e-2
CVFEM-Mc 0.0 5.17e-3 2.65e-2 8.64e-2 2.37e-1 5.51e-1 1.26e-1
SUCV βopt 0.0 4.68e-3 1.89e-2 5.03e-2 1.51e-1 4.91e-1 9.40e-2
SUCV β = 1/2 0.0 3.50e-3 4.67e-3 8.47e-3 2.83e-2 4.04e-1 4.94e-2
FDM 0.0 1.91e-2 7.79e-2 1.82e-1 3.39e-1 5.62e-1 1.80e-1
FOU
FDM-Mc 0.0 8.82e-3 3.99e-2 1.11e-1 2.60e-1 5.22e-1 1.36e-1
SOU 0.0 3.02e-2 5.80e-2 1.23e-2 2.07e-1 5.71e-1 1.18e-1
TOU 0.0 1.70e-3 2.41e-2 1.04e-1 2.76e-1 5.65e-1 1.38e-1
Fromm’s 0.0 6.62e-3 2.17e-3 7.38e-2 2.54e-1 5.67e-1 1.24e-1
QUICK 0.0 5.94e-3 3.65e-2 1.21e-1 2.90e-1 5.65e-1 1.47e-1
LSR(0) 0.0 6.73e-3 3.49e-3 6.80e-2 2.44e-1 5.75e-1 1.22e-1
LSR(-1) 0.0 3.04e-2 6.17e-2 2.71e-2 1.92e-1 5.95e-1 1.22e-1

Table 4.2: Coefficient of Variation of phase speed, ςc̃, as a function of 2∆x/λ,
and its average, ςc̃, for the two-dimensional, γ = 1/2 semi-discretizations.
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εc̃ as a function of
2∆x/λ

Method 0.0 0.2 0.4 0.6 0.8 1.0 εc̃

FEM-Mc 0.0 6.14e-4 1.12e-2 6.92e-2 2.71e-1 6.90e-1 1.39e-1
SUPG βopt 0.0 2.81e-4 3.97e-3 1.46e-2 6.78e-2 5.61e-1 7.34e-2
SUPG β = 1/2 0.0 2.32e-3 2.91e-2 1.14e-1 2.62e-1 4.87e-1 1.30e-1
CVFEM-Mc 0.0 1.35e-2 6.36e-2 1.82e-1 4.15e-1 7.45e-1 2.09e-1
SUCV βopt 0.0 1.22e-2 4.54e-2 1.04e-1 2.54e-1 6.43e-1 1.47e-1
SUCV β = 1/2 0.0 9.26e-3 1.28e-2 2.18e-2 5.21e-2 5.14e-1 7.06e-2
FDM 0.0 4.99e-2 1.89e-1 3.91e-1 6.17e-1 8.29e-1 3.32e-1
FOU
FDM-Mc 0.0 1.20e-2 5.30e-2 1.46e-1 3.39e-1 6.41e-1 1.74e-1
SOU 0.0 8.97e-2 2.39e-1 2.25e-1 2.14e-1 6.60e-1 2.20e-1
TOU 0.0 3.38e-3 4.75e-2 1.94e-1 4.55e-1 7.61e-1 2.16e-1
Fromm’s 0.0 1.99e-2 2.69e-2 1.02e-1 3.78e-1 7.31e-1 1.78e-1
QUICK 0.0 1.50e-2 8.27e-2 2.43e-1 4.94e-1 7.77e-1 2.44e-1
LSR(0) 0.0 1.87e-2 1.08e-2 1.47e-1 4.63e-1 8.19e-1 2.10e-1
LSR(-1) 0.0 8.73e-2 2.07e-1 1.07e-1 3.11e-1 8.10e-1 2.23e-1

Table 4.3: RMS error of discrete phase speed, εc̃, as a function of 2∆x/λ,
and its average, εc̃, for the two-dimensional, γ = 1 semi-discretizations.
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εc̃ as a function of
2∆x/λ

Method 0.0 0.2 0.4 0.6 0.8 1.0 εc̃

FEM-Mc 0.0 4.31e-4 7.86e-3 4.87e-2 1.91e-1 4.85e-1 9.80e-2
SUPG βopt 0.0 7.35e-5 9.49e-4 3.95e-3 5.87e-2 4.11e-1 5.39e-2
SUPG β = 1/2 0.0 1.28e-3 1.71e-2 6.94e-2 1.52e-1 3.39e-1 8.19e-2
CVFEM-Mc 0.0 9.58e-3 4.51e-2 1.29e-1 2.92e-1 5.24e-1 1.48e-1
SUCV βopt 0.0 8.88e-3 3.45e-2 8.23e-2 1.97e-1 4.66e-1 1.11e-1
SUCV β = 1/2 0.0 7.17e-3 1.42e-2 1.24e-2 3.34e-2 3.80e-1 5.15e-2
FDM 0.0 3.56e-2 1.36e-1 2.81e-1 4.46e-1 6.05e-1 2.40e-1
FOU
FDM-Mc 0.0 8.83e-3 4.01e-2 1.12e-1 2.55e-1 4.64e-1 1.30e-1
SOU 0.0 6.43e-2 1.76e-1 1.95e-1 2.35e-1 5.07e-1 1.85e-1
TOU 0.0 2.37e-3 3.33e-2 1.36e-1 3.18e-1 5.32e-1 1.51e-1
Fromm’s 0.0 1.44e-2 2.30e-2 7.63e-2 2.67e-1 5.09e-1 1.27e-1
QUICK 0.0 1.06e-2 5.84e-2 1.71e-1 3.48e-1 5.47e-1 1.72e-1
LSR(0) 0.0 1.41e-2 1.79e-2 8.00e-2 2.85e-1 5.42e-1 1.34e-1
LSR(-1) 0.0 6.38e-2 1.68e-1 1.55e-1 1.89e-1 5.16e-1 1.67e-1

Table 4.4: RMS error of discrete phase speed, εc̃, as a function of 2∆x/λ,
and its average, εc̃, for the two-dimensional, γ = 1/2 semi-discretizations.
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4.3 Discrete Diffusivity

This section begins with a presentation of the analytic expressions for the
dimensionless discrete diffusivity for all the semi-discretizations considered.
A summary of the discrete diffusivity results in terms of polar plots and
the anisotropy and error metrics follows. These results demonstrate the
aspect ratio, wavelength and propagation angle dependence of the discrete
diffusivity for the individual methods and provide a means of comparison
between methods.

4.3.1 2D Discrete Diffusivity Formulae

Some, but not all, of the two-dimensional formulae for discrete diffusivity
can be written in the same form as for phase error, Eq. (4.7), if we replace
F 1Dc̃ with the 1-D formula for dimensionless discrete diffusivity, F 1D

α̃ , given
in Table 3.6. The result is,

α̃

α
= cos2 θ F 1Dα̃ (k∆x cos θ) + sin2 θ F 1Dα̃ (γk∆x sin θ). (4.21)

The methods which have this form include all of the FDMs (FOU (hence
CD), SOU, TOU, QUICK, and Fromm) and the LSR schemes, since they
all share the same 5-point diffusion stencil. FEM and CVFEM can also be
factored into this form. For example, for FEM and CVFEM

F 1Dα̃ =
2(1− cosϑ)

ϑ2
1

M(ϑ) ,

in terms of the mass matrix symbol, and hence the two-dimensional discrete
diffusivity formula is

α̃

α
= cos2 θ

2(1− cos(k∆x cos θ))
(k∆x cos θ)2

1

M(θx)

+ sin2 θ
2(1− cos(γk∆x sin θ))

(γk∆x sin θ)2
1

M(θy)
. (4.22)

Notice that the discrete diffusivities represented by Eq. (4.21) also exhibit
the one-dimensional form when the mode is propagating in a direction normal
to the grid diagonals, i.e., when tan θ = 1/γ. In this case Eq. (4.21) becomes

α̃

α
= F 1Dα̃ (k∆x cos θ), (4.23)

the 1-D version of discrete diffusivity on an effective mesh spacing of k∆x cos θ,
the spacing between grid diagonals.
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The 2-D discrete diffusivity for SUPG and SUCV is

α̃

α
=

[

cos2 θF(θx)
θ2
x

+ sin2 θF(θy)
θ2
y

]

[

1 + β2(θx + θy)2
(

cos2 θ G(θx) + sin2 θ G(θy)
)2
] (4.24)

in terms of the functions defined in Eq. (4.19). Except for the inclusion of
the τ factor, this formula has the form Eq. (4.21), with a modified angular-
dependent β parameter.

4.3.2 2D Discrete Diffusivity Results

The discrete diffusivity results for our two-dimensional semi-discretizations
are presented in Figures 4.16 to 4.23. Figures (a) and (b) present α̃/α for grid
aspect ratios of γ = 1 and 1/2 respectively. Dimensionless discrete diffusivity
curves are plotted for 2∆x/λ = 0, 0.2, 0.4, 0.6, 0.8 and 1.0. In the ideal case,
the discrete diffusivity would exactly replicate the continuous diffusivity for
the entire discrete spectrum from the limit ∆x→ 0 to the grid Nyquist limit.
Hence, in the ideal case, the discrete diffusivity curves would be circular, each
giving α̃/α = 1. However, all of the methods considered here are either over-
or under-diffusive, the magnitude of the error in diffusivity being dependent
on wavelength, grid aspect ratio and propagation direction.
Several points regarding the semi-discretizations are noted before begin-

ning the discussion of results. First, results for the lumped mass variants of
FEM and CVFEM are not included here because their results are significantly
degraded relative to their consistent mass counterparts. Second, as the finite
difference semi-discretizations use second-order centered approximations for
the diffusion operator in conjunction with a lumped mass matrix, they yield
identical discrete diffusivities (the exception being FDM-Mc where the “con-
sistent” mass matrix is used). For this reason, discrete diffusivity results for
the lumped mass finite difference schemes considered here are identical and
presented as one result labeled FDM.
Several characteristics are evident from the series of figures presented

here. First, the figures clearly indicate anisotropic discrete diffusivities for
all schemes considered. As with the two-dimensional phase speed results,
the γ = 1 cases all show quarter-symmetry while the γ = 1/2 discretiza-
tions show half-symmetry. The figures also suggest that the anisotropy gen-
erally increases with increasing 2∆x/λ. This observation is demonstrated
quantitatively in Tables 4.5 and 4.6 where the coefficient of variation of the
discrete diffusivity, ςα̃, and its mean, ςα̃, are presented. The tables show
that ςα̃ generally grows with increasing dimensionless wavenumber. In terms
of the ςα̃ metric, and relative to the grid aspect ratio, γ = 1/2 minimizes θ-
dependence for all but the FEM-Mc and SUCV β = 1/2 semi-discretizations.
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Figure 4.16: Non-dimensional discrete diffusivity for the consistent mass
Galerkin finite element method with a) γ = 1 and b) γ = 1/2.

Finally, it is evident from a method-to-method comparison of ςα̃ that FEM-
Mc and CVFEM-Mc minimize anisotropic behavior regardless of grid aspect
ratio. Note that the SUCV and SUPG schemes can achieve equal or bet-
ter anisotropy performance relative to FEM and CVFEM given the proper
choice of β though a poor choice yields the overall worst anisotropy. It is also
interesting to note that the best choice of stabilization parameter for SUCV
(β = 1/2) in terms of phase speed anisotropy (cf. Tables 4.1 and 4.2) is the
worst choice for discrete diffusivity.
The series of figures in this section also provides information concerning

the error in the discrete diffusivity relative to its continuum counterpart for
each method. As suggested by the anisotropy discussion above, this error
is dependent on wavenumber as well as propagation angle. A quantitative
measure of the discrete diffusivity errors is presented in Tables 4.7 and 4.8. As
with ςα̃, the discrete diffusivity errors, εα̃, generally increase with increasing
2∆x/λ, peaking at the Nyquist limit. In terms of the εα̃ metric, the γ
= 1/2 results minimize diffusivity errors relative to the unit aspect ratio
cases for all the methods. Finally, it is evident from a method-to-method
comparison of εα̃ that CVFEM-Mc minimizes errors, irrespective of γ. Note
that the SUPG and SUCV semi-discretizations yield by far the worst discrete
diffusivity error (in terms of εα̃) relative to the other semi-discretizations,
irrespective of aspect ratio.
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Figure 4.17: Non-dimensional discrete diffusivity (α̃/α; radial) as a function
of θ (azimuthal) for consistent mass matrix finite element method SUPG
with βopt with a) γ = 1 and b) γ = 1/2.
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Figure 4.18: Non-dimensional discrete diffusivity (α̃/α; radial) as a function
of θ (azimuthal) for consistent mass matrix finite element method SUPG
with β = 1/2 with a) γ = 1 and b) γ = 1/2.
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Figure 4.19: Non-dimensional discrete diffusivity for the consistent mass con-
trol volume finite element method with a) γ = 1 and b) γ = 1/2.
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Figure 4.20: Non-dimensional discrete diffusivity (α̃/α; radial) as a function
of θ (azimuthal) for consistent mass matrix control volume finite element
method SUCV with βopt with a) γ = 1 and b) γ = 1/2.
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Figure 4.21: Non-dimensional discrete diffusivity (α̃/α; radial) as a function
of θ (azimuthal) for consistent mass matrix control volume finite element
method SUCV with β = 1/2 with a) γ = 1 and b) γ = 1/2.
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Figure 4.22: Non-dimensional discrete diffusivity for the finite difference
method with first-order upwind and aspect ratios of a) γ = 1 and b) γ = 1/2.
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Figure 4.23: Non-dimensional discrete diffusivity (α̃/α; radial) as a function
of θ (azimuthal) for the node-centered finite volume method with second
order gradient approximation and consistent mass matrix with a) γ = 1 and
b) γ = 1/2.
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ςα̃ as a function of
2∆x/λ

Method 0.0 0.2 0.4 0.6 0.8 1.0 ςα̃

FEM-Mc 0.0 5.78e-3 2.24e-2 4.38e-2 4.35e-2 5.07e-2 2.82e-2
SUPG βopt 0.0 1.35e-2 5.09e-2 1.07e-1 1.79e-1 1.56e-1 8.57e-2
SUPG β = 1/2 0.0 3.22e-2 1.02e-1 1.89e-1 3.32e-1 4.07e-1 1.72e-1
CVFEM-Mc 0.0 5.85e-3 2.37e-2 5.47e-2 1.01e-1 1.64e-1 5.34e-2
SUCV βopt 0.0 1.06e-2 3.85e-2 7.58e-2 1.04e-1 5.08e-2 5.08e-2
SUCV β = 1/2 0.0 2.17e-3 4.37e-3 1.77e-2 4.92e-2 5.81e-1 7.28e-2
FDM 0.0 1.19e-2 5.06e-2 1.29e-1 2.85e-1 7.00e-1 1.65e-1
FDM-Mc 0.0 1.19e-2 5.21e-2 1.38e-1 3.22e-1 7.60e-1 1.81e-1

Table 4.5: Coefficient of Variation of discrete diffusivity, ςα̃, as a func-
tion of 2∆x/λ, and its average, ςα̃, for the two-dimensional, γ = 1, semi-
discretizations considered here.
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ςα̃ as a function of
2∆x/λ

Method 0.0 0.2 0.4 0.6 0.8 1.0 ςα̃

FEM -Mc 0.0 9.45e-3 3.73e-2 7.78e-2 1.01e-1 4.29e-2 4.94e-2
SUPG βopt 0.0 7.78e-3 3.10e-2 7.29e-2 1.48e-1 1.84e-1 7.03e-2
SUPG β = 1/2 0.0 2.37e-2 7.73e-2 1.34e-1 2.43e-1 4.48e-1 1.40e-1
CVFEM-Mc 0.0 4.56e-3 1.58e-2 2.34e-2 7.75e-3 9.27e-2 1.96e-2
SUCV βopt 0.0 6.21e-3 2.30e-2 4.78e-2 7.76e-2 7.71e-2 3.86e-2
SUCV β = 1/2 0.0 2.51e-2 7.76e-2 1.26e-1 2.01e-1 2.80e-1 1.14e-1
FDM 0.0 9.46e-3 3.78e-2 8.47e-2 1.49e-1 2.30e-1 7.92e-2
FDM-Mc 0.0 5.58e-3 2.12e-2 4.48e-2 8.54e-2 1.79e-1 4.94e-2

Table 4.6: Coefficient of Variation of discrete diffusivity, ςα̃, as a function
of 2∆x/λ, and its average, ςα̃, for the two-dimensional, γ = 1/2 semi-
discretizations considered here.

εα̃ as a function of
2∆x/λ

Method 0.0 0.2 0.4 0.6 0.8 1.0 εα̃

FEM-Mc 0.0 2.56e-2 1.05e-1 2.38e-1 3.70e-1 3.26e-1 1.80e-1
SUPG βopt 0.0 2.18e-2 7.37e-2 1.26e-1 1.76e-1 1.88e-1 9.84e-2
SUPG β = 1/2 0.0 1.20e-1 3.28e-1 4.61e-1 4.63e-1 3.78e-1 3.12e-1
CVFEM-Mc 0.0 1.24e-2 4.56e-2 8.06e-2 7.19e-2 1.12e-1 5.33e-2
SUCV βopt 0.0 3.04e-2 9.92e-2 1.60e-1 1.79e-1 1.84e-1 1.12e-1
SUCV β = 1/2 0.0 1.28e-1 3.37e-1 4.60e-1 4.65e-1 3.81e-1 3.16e-1
FDM 0.0 2.51e-2 9.69e-2 2.06e-1 3.39e-1 4.79e-1 1.81e-1
FDM-Mc 0.0 2.54e-2 1.01e-1 2.19e-1 3.49e-1 4.51e-1 1.84e-1

Table 4.7: RMS discrete diffusivity error, εα̃, as a function of 2∆x/λ, and its
average, εα̃, for the two-dimensional, γ = 1 semi-discretizations considered
here.
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εα̃ as a function of
2∆x/λ

Method 0.0 0.2 0.4 0.6 0.8 1.0 εα̃

FEM-Mc 0.0 1.83e-2 7.50e-2 1.70e-1 2.65e-1 2.46e-1 1.30e-1
SUPG βopt 0.0 1.19e-2 4.32e-2 8.57e-2 1.47e-1 1.82e-1 7.57e-2
SUPG β = 1/2 0.0 7.37e-2 2.26e-1 3.56e-1 4.15e-1 4.38e-1 2.58e-1
CVFEM-Mc 0.0 8.86e-3 3.27e-2 5.86e-2 5.79e-2 9.32e-2 4.09e-2
SUCV βopt 0.0 1.75e-2 6.11e-2 1.11e-1 1.50e-1 1.91e-1 8.70e-2
SUCV β = 1/2 0.0 7.96e-2 2.37e-1 3.64e-1 4.25e-1 4.43e-1 2.65e-1
FDM 0.0 1.79e-2 6.92e-2 1.48e-1 2.43e-1 3.46e-1 1.30e-1
FDM-Mc 1.64e-2 6.44e-2 1.38e-1 2.19e-1 3.05e-1 1.18e-1

Table 4.8: RMS discrete diffusivity error, εα̃, as a function of 2∆x/λ, and its
average, εα̃, for the two-dimensional, γ = 1/2 semi-discretizations considered
here.
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4.4 Artificial Diffusivity

This section examines artificial diffusivity associated with our two-dimensional
semi-discretizations. As noted earlier, artificial diffusion may be added de-
liberately (e.g. SUPG/SUCV) or be a by-product of the discretization (e.g.
first-order upwind). While in general not a desirable feature of a method, ar-
tificial diffusivity can be used to stabilize a discretization scheme. In terms of
artificial diffusivity, stabilization is achieved through the annihilation (damp-
ing) of numerical artifacts such as high-frequency dispersion errors in under-
resolved convection-dominated problems. In this light, an ideal artificial dif-
fusivity function would only be active in the high frequency spectrum, near
the Nyquist limit for example, and be negligible otherwise, going to zero
at the long wavelength limit. This feature of artificial diffusivity is shared
for both one- and two-dimensional discretizations. For the two-dimensional
discretizations, it is also desirable for the artificial diffusivity have an an-
gular variation proportional to the angular variation of phase error so that
high-frequency dispersion errors are damped at the same rate, irregardless of
propagation direction.

This section begins with a presentation of the analytic expressions for
the non-dimensional artificial diffusivity, presented in terms of 1/Part

e (=
2αart/c∆x), for all the semi-discrete methods considered. A summary of
the artificial diffusivity results in terms of polar plots and the anisotropy and
error metrics follows. These results demonstrate the aspect ratio, wavelength
and propagation angle dependence of the individual methods and provide a
means of comparison between methods.

4.4.1 2D Artificial Diffusivity Formulae

As was the case for several of the previous two-dimensional discrete phase
speed and diffusivity formulae, the two-dimensional formulae for artificial
diffusivity for FEM, CVFEM, CD, SOU, TOU, Fromm, and QUICK can be
written in the form,

2αart

c
= (∆x cos θ) cos2 θ F 1Dαart(k∆x cos θ)

+ (∆y sin θ) sin2 θ F 1Dαart(k∆y sin θ) (4.25)

where F 1Dαart(x) denotes the dimensionless 1-D formula for artificial diffusivity
as given in Table 3.8. In terms of the Part

e defined previously, the formula
becomes

2αart

c∆x
= cos3 θF 1Dαart(k∆x cos θ) + γ sin3 θF 1Dαart(γk∆x sin θ) (4.26)
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Again, note that for θ = π/4 and γ = 1, we get the 1-D formula for artificial
diffusivity on a smaller mesh spacing

2αart

c(
√
2∆x/2)

= F 1Dαart(k
√
2∆x/2) (4.27)

in which the dimensionless Peclet number is modified to account for the
smaller mesh spacing. In general, when 1/γ = tan θ (and therefore ∆x cos θ =
∆y sin θ) Eq.(4.26) takes the form

2αart

c∆x cos θ
= F 1Dαart(k∆x cos θ) (4.28)

once again illustrating the 1-D nature of the artificial diffusion when the
wave is propagating perpendicular to the mesh diagonals. In this case the
scaling for dimensionless artificial diffusion includes the effective mesh spac-
ing and the artificial diffusion function is the 1-D function with the effective
wavenumber (k∆x cos θ) as argument. Notice that this effective wavenumber
has a restricted range (0 ≤ 2∆x/λ ≤ cos θ) compared to the range in the 1-D
case (0 ≤ 2∆x/λ ≤ 1). This means, for example, that the effective Nyquist
wavenumber when θ = π/3 say (i.e, γ = 1/ tan θ = 1/

√
3) is

√
3/2, rather

than unity.
The remaining schemes do not have as simple a form as Eq. (4.26);

these include the LSR schemes, SUPG and SUCV. Dimensionless artificial
diffusivity for the LSR(-1) scheme is,

2αart

c∆x
=

cos2 θ

3θ2x
[11 + (1 + 2 cos θy) cos 2θx − 12 cos θx − 2 cos θy]

+
sin2 θ

3θ2y
[11 + (1 + 2 cos θx) cos 2θy − 12 cos θy − 2 cos θx] .(4.29)

In 1-D this reduces to the artificial diffusion formula for SOU. The dimen-
sionless artificial diffusion formula for LSR(0) is 1/2 times the formula for
LSR(-1), which in 1-D reduces to the formula for Fromm’s method. These
artificial diffusion functions are similar to the simple form given above, how-
ever they do not separate into x- and y- component function but instead
contain cross-terms.
The artificial diffusivity for SUPG and SUCV are given by:

2αart

c∆x
= 4βθ

[

cos4 θ
θ2
xM(θx)

(

(1− cos θx)− sin2 θ
2M(θx)

)

+ sin4 θ
θ2
yM(θy)

(

(1− cos θy)− sin2 θ
2M(θy)

)

]

[

1 + β2(θx + θy)2
(

cos2 θ G(θx) + sin2 θ G(θy)
)2
]

(4.30)
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in terms of the definitions in Eq. (4.19) and the symbol for the mass matrix,
M(θ) given in Table 3.1. For example, M(θx) = (2 + cos θx)/3 for SUPG,
and M(θx) = (3 + cos θx)/4 for SUCV. The similarity of the various terms
to the 1-D version is clear. The formulae revert to the corresponding 1-D
formulae along the coordinate directions.

4.4.2 2D Artificial Diffusivity Results

The artificial diffusivity results for the two-dimensional semi-discretizations
are presented in Figures 4.24 to 4.34. Figures (a) and (b) for each method
present dimensionless artificial diffusivity, 1/Part

e , for grid aspect ratios of
γ = 1 and 1/2 respectively. Dimensionless artificial diffusivity curves are
plotted for 2∆x/λ = 0, 0.2, 0.4, 0.6, 0.8 and 1.0.

From the series of figures presented in this section, it is clear that the
artificial diffusivity displays significant anisotropy. A comparison of the dif-
ferent aspect ratio results for each method demonstrates greater anisotropy
for the γ = 1/2 cases. Additionally, all the methods show quarter- and half-
symmetry for the γ = 1 and 1/2 aspect ratio cases respectively – consistent
with the symmetry of the underlying spatial grid.

Tables 4.9 and 4.10 present the coefficient of variation of dimensionless ar-
tificial diffusivity, ς art, and its mean, ς art, and clearly demonstrate the aspect
ratio dependence of the anisotropy. The tables show that ς art is significantly
greater for the γ = 1/2 grids relative to their unit aspect ratio counterparts.
In terms of the ς art metric, the finite difference schemes show decreasing
anisotropy with wavenumber while the SUPG and SUCV methods gener-
ally demonstrate the opposite behavior. This SUPG/SUCV wavenumber
dependence of anisotropy is not optimal because, ideally, artificial diffusivity
becomes active in the high wavenumber region. It is also evident from the
tables that the FOU, SOU, TOU, Fromm’s and QUICK schemes produce
identical anisotropy metric values as their stencils differ only by a multiplier
that is independent of θ (see Appendix A) and hence drops out of the met-
ric calculation (see Eq. 4.1). The two LSR schemes also share a common
stencil (differing by a θ-independent multiplier) and hence also demonstrate
identical anisotropy metrics.

The series of figures in this section also provides information concerning
the magnitude of the artificial diffusivity of each method. As suggested by the
anisotropy discussion above, artificial diffusivity is dependent on wavenumber
and propagation direction. Indeed, the figures demonstrate that artificial dif-
fusivity is generally maximized along the x and y-coordinate directions when
γ = 1, and along the x-coordinate direction for γ = 1/2. Recall that these
directions correspond to the worst phase speed accuracy for each of these
aspect ratios. Artificial diffusivity is generally minimized along the θ = π/4
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Figure 4.24: Non-dimensional artificial diffusivity (1/Part
e ; radial) as a func-

tion of θ (azimuthal) for consistent mass matrix finite element method SUPG
with βopt with a) γ = 1 and b) γ = 1/2.

direction when γ = 1, corresponding to the best dispersion accuracy for the
methods considered here. Hence, the anisotropy of the artificial diffusivity
is consistent with the anisotropy of the concomitant dispersive behavior. A
quantitative measure of the dimensionless artificial diffusivity is presented in
Tables 4.11 and 4.12 for the γ = 1 and 1/2 aspect ratio cases respectively.
All but the FOU semi-discretizations demonstrate generally increasing arti-
ficial diffusivity, in terms of the εart metric, with increasing wavenumber. As
with the one-dimensional results, FOU demonstrates dimensionless artificial
diffusivity which decreases with wavenumber. In terms of the εart metric,
the FOU and LSR(-1) methods show the greatest amount of damping while
the SUPG, SUCV and TOU schemes produce the least artificial diffusivity
as measured in this metric.
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Figure 4.25: Non-dimensional artificial diffusivity (1/Part
e ; radial) as a func-

tion of θ (azimuthal) for consistent mass matrix finite element method SUPG
with β = 1/2 with a) γ = 1 and b) γ = 1/2.
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Figure 4.26: Non-dimensional artificial diffusivity (1/Part
e ; radial) as a func-

tion of θ (azimuthal) for consistent mass matrix control volume finite element
method SUCV with βopt with a) γ = 1 and b) γ = 1/2.
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Figure 4.27: Non-dimensional artificial diffusivity (1/Part
e ; radial) as a func-

tion of θ (azimuthal) for consistent mass matrix control volume finite element
method SUCV with β = 1/2 with a) γ = 1 and b) γ = 1/2 (right).
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Figure 4.28: Non-dimensional artificial diffusivity (1/Part
e ; radial) as a func-

tion of θ (azimuthal) for the first-order upwind (FOU) semi-discretization.
Results for aspect ratios of a) γ = 1 and b) γ = 1/2 are shown.
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Figure 4.29: Non-dimensional artificial diffusivity (1/Part
e ; radial) as a func-

tion of θ (azimuthal) for the second-order upwind (SOU) semi-discretization.
Results are shown for a) γ = 1 and b) γ = 1/2.
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Figure 4.30: Non-dimensional artificial diffusivity (1/Part
e ; radial) as a func-

tion of θ (azimuthal) for the third-order upwind (TOU) semi-discretization.
Results are shown for a) γ = 1 and b) γ = 1/2.
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Figure 4.31: Non-dimensional artificial diffusivity (1/Part
e ; radial) as a func-

tion of θ (azimuthal) for Fromm’s method. Results for a) γ = 1 and b)
γ = 1/2 are shown.
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Figure 4.32: Non-dimensional artificial diffusivity (1/Part
e ; radial) as a func-

tion of θ (azimuthal) for the QUICK semi-discretization. Results for a) γ = 1
and b) γ = 1/2 are shown.
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Figure 4.33: Non-dimensional artificial diffusivity (1/Part
e ; radial) as a func-

tion of θ (azimuthal) for the least squares reconstruction (LSR(0); θ = 1., κ
= 0). Results for a) γ = 1 and b) γ = 1/2 are shown.
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Figure 4.34: Non-dimensional artificial diffusivity (1/Part
e ; radial) as a func-

tion of θ (azimuthal) for the least squares reconstruction (LSR(-1); θ = 1., κ
= -1). Results for a) γ = 1 and b) γ = 1/2 are shown.

ς art as a function of
2∆x/λ

Method 0.0 0.2 0.4 0.6 0.8 1.0 ς art

SUPG βopt 0.0 3.56e-1 3.96e-1 4.51e-1 4.97e-1 4.05e-1 3.81e-1
SUPG β = 1/2 0.0 3.71e-1 4.35e-1 5.14e-1 6.12e-1 5.91e-1 4.46e-1
SUCV βopt 0.0 3.52e-1 3.78e-1 4.07e-1 4.09e-1 2.90e-1 3.39e-1
SUCV β = 1/2 0.0 3.67e-1 4.20e-1 4.81e-1 5.36e-1 4.59e-1 4.08e-1
FOU 0.0 1.16e-1 9.81e-2 6.73e-2 2.16e-2 4.88e-2 7.75e-2
SOU 0.0 3.27e-1 2.98e-1 2.46e-1 1.62e-1 3.52e-2 2.11e-1
TOU 0.0 3.27e-1 2.98e-1 2.46e-1 1.62e-1 3.52e-2 2.11e-1
Fromm’s 0.0 3.27e-1 2.98e-1 2.46e-1 1.62e-1 3.52e-2 2.11e-1
QUICK 0.0 3.27e-1 2.98e-1 2.46e-1 1.62e-1 3.52e-2 2.11e-1
LSR(0) 0.0 6.59e-2 5.98e-2 4.56e-2 1.64e-2 5.40e-2 4.52e-2
LSR(-1) 0.0 6.59e-2 5.98e-2 4.56e-2 1.64e-2 5.40e-2 4.75e-2

Table 4.9: Coefficient of Variation of 1/Part
e , ς art, as a function of 2∆x/λ,

and its average, ς art, for the two-dimensional, γ = 1 semi-discretizations
considered here.
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ς art as a function of
2∆x/λ

Method 0.0 0.2 0.4 0.6 0.8 1.0 ς art

SUPG βopt 0.0 8.61e-1 9.02e-1 9.67e-1 1.03 9.53e-1 8.48e-1
SUPG β = 1/2 0.0 8.54e-1 8.85e-1 9.60e-1 1.10 1.14 8.75e-1
SUCV βopt 0.0 8.52e-1 8.69e-1 8.93e-1 8.93e-1 7.57e-1 7.78e-1
SUCV β = 1/2 0.0 8.46e-1 8.58e-1 9.07e-1 9.91e-1 9.50e-1 8.16e-1
FOU 0.0 2.97e-1 2.64e-1 2.08e-1 1.26e-1 2.14e-2 2.12e-1
SOU 0.0 8.40e-1 7.91e-1 7.02e-1 5.61e-1 3.49e-1 6.15e-1
TOU 0.0 8.40e-1 7.91e-1 7.02e-1 5.61e-1 3.49e-1 6.15e-1
Fromm’s 0.0 8.40e-1 7.91e-1 7.02e-1 5.61e-1 3.49e-1 6.15e-1
QUICK 0.0 8.40e-1 7.91e-1 7.02e-1 5.61e-1 3.49e-1 6.15e-1
LSR(0) 0.0 6.32e-1 5.87e-1 5.07e-1 3.85e-1 2.24e-1 4.46e-1
LSR(-1) 0.0 6.32e-1 5.87e-1 5.07e-1 3.85e-1 2.24e-1 4.48e-1

Table 4.10: Coefficient of Variation of 1/Part
e , ς art, as a function of 2∆x/λ,

and its average, ς art, for the two-dimensional, γ = 1/2 semi-discretizations
considered here.

εart as a function of
2∆x/λ

Method 0.0 0.2 0.4 0.6 0.8 1.0 εart

SUPG βopt 0.0 1.40e-2 6.03e-2 1.57e-1 3.48e-1 5.29e-1 1.69e-1
SUPG β = 1/2 0.0 2.47e-2 8.66e-2 1.92e-1 4.36e-1 9.13e-1 2.39e-1
SUCV βopt 0.0 2.04e-2 8.06e-2 1.81e-1 3.14e-1 3.75e-1 1.57e-1
SUCV β = 1/2 0.0 3.60e-2 1.19e-1 2.39e-1 4.45e-1 6.50e-1 2.33e-1
FOU 8.55e-1 8.32e-1 7.67e-1 6.69e-1 5.50e-1 4.26e-1 6.92e-1
SOU 0.0 1.33e-1 4.46e-1 7.42e-1 8.58e-1 7.68e-1 5.13e-1
TOU 0.0 4.44e-2 1.49e-1 2.47e-1 2.86e-1 2.56e-1 1.71e-1
Fromm’s 0.0 6.67e-2 2.23e-1 3.71e-1 4.29e-1 3.84e-1 2.56e-1
QUICK 0.0 1.04e-2 3.19e-2 4.42e-2 3.43e-2 6.75e-3 2.48e-2
LSR(0) 0.0 8.39e-2 2.76e-1 4.47e-1 5.00e-1 4.31e-1 3.05e-1
LSR(-1) 0.0 1.68e-1 5.52e-1 8.95e-1 1.00 8.63e-1 6.09e-1

Table 4.11: RMS value of 1/Part
e , εart, as a function of 2∆x/λ, and its

average, εart, for the two-dimensional γ = 1 semi-discretizations considered
here.
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εart as a function of
2∆x/λ

Method 0.0 0.2 0.4 0.6 0.8 1.0 εart

SUPG βopt 0.0 9.07e-3 3.98e-2 1.06e-1 2.34e-1 3.44e-1 1.12e-1
SUPG β = 1/2 0.0 1.63e-2 6.00e-2 1.36e-1 3.09e-1 6.08e-1 1.65e-1
SUCV βopt 0.0 1.32e-2 5.31e-2 1.21e-1 2.09e-1 2.42e-1 1.03e-1
SUCV β = 1/2 0.0 2.38e-2 8.19e-2 1.68e-1 3.09e-1 4.28e-1 1.59e-1
FOU 6.66e-1 6.51e-1 6.09e-1 5.45e-1 4.70e-1 3.92e-1 5.61e-1
SOU 0.0 9.36e-2 3.13e-1 5.21e-1 6.08e-1 5.62e-1 3.63e-1
TOU 0.0 3.12e-2 1.04e-1 1.74e-1 2.03e-1 1.87e-1 1.21e-1
Fromm’s 0.0 4.68e-2 1.57e-1 2.61e-1 3.04e-1 2.81e-1 1.82e-1
QUICK 0.0 2.34e-2 7.83e-2 1.30e-1 1.52e-1 1.40e-1 9.09e-2
LSR(0) 0.0 5.18e-2 1.74e-1 2.95e-1 3.53e-1 3.41e-1 2.09e-1
LSR(-1) 0.0 1.04e-1 3.49e-1 5.89e-1 7.05e-1 6.82e-1 4.18e-1

Table 4.12: RMS value of 1/Part
e , εart, as a function of 2∆x/λ, and its

average, εart, for the two-dimensional, γ = 1/2 semi-discretizations.
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Chapter 5

Summary and Conclusions

This work constitutes a first step in a multi-methods comparison, and is
intended to identify some of the relative strengths and weaknesses of multi-
ple numerical methods in the context of advection-diffusion. This problem
class has been selected because it can represent multiple limiting physical
processes, and the solution methods for advection-diffusion can serve as the
basic building-blocks required to assemble more complicated solution meth-
ods for nonlinear problems such as high-Reynolds number, time-dependent,
viscous flow.

Summary

As the starting point for a multi-methods analysis and comparison, we chose
to apply Fourier analysis because it provides a general methodology that is
capable of analyzing multiple methods in a single mathematical framework
while providing a great deal of information and insight into each method. In
this work, Fourier analysis has been used to investigate the following aspects
of each numerical method:

• numerical dispersion, i.e., phase and group velocity errors,

• the spectral behavior of the apparent, i.e., discrete, diffusivity that is
introduced by the spatial discretization and results in many schemes
being under-diffusive at short-wavelengths,

• the limiting behavior of short wavelength information for both wave
propagation and diffusion,

• the identification and characterization of artificial diffusivity via up-
winding,
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• grid bias errors in phase, group, discrete diffusivity and artificial diffu-
sivity, and

• asymptotic convergence properties.

The results of this first step show that there are a number of competing
methods that are all of second-order accuracy or better and that should
perform adequately in the hands of an experienced analyst. While there
is no single best method, there are at least two methods that are clearly
the worst. The first-order upwind method is excessively diffusive, and the
second-order upwind method is extremely dispersive.
The Galerkin finite element method and its streamline-upwind derivatives

exhibit remarkable super-convergent behavior in terms of dispersive behav-
ior, i.e., phase and group accuracy. The only other method considered that
exhibited this behavior is the third-order upwind scheme. Analysis of sev-
eral CVFEM methods and their streamline-upwind derivatives revealed that
their behavior is strictly second-order in all of our metrics. While it appears
that these methods yield good phase and group accuracy when the accu-
racy requirements are relaxed, the resolution requirements for an acceptable
1% error in phase and group is more than twice that of the finite element
method in a one-dimensional sense (greater than a factor of eight in three
dimensions).
The deleterious effects of ad-hoc mass-lumping was demonstrated (again)

for the FEM and CVFEM formulations. In comparison, the FD and FVM
formulations, by default, incorporate a diagonal mass matrix, i.e., they come
equipped with a built-in lumped mass approximation in which the nodal
time derivative are decoupled. In terms of advection-diffusion, the FD and
FVM schemes represent the time-dependent terms by an equivalent lumped-
capacitance. In contrast, the consistent mass matrix inherent in the FEM/CVFEM
formulations represent this time-dependent terms by a distributed capaci-
tance that more accurately reflects the physical situation in the continuum.
As a consequence, the lumped-capacitance representation inherent in the
FD and FVM schemes yield schemes that generally under perform in terms
of phase and group speed relative to their consistent-mass FEM/CVFEM
counterparts.
Several of the finite difference and finite volume methods show reasonable

dispersion characteristics, however it should be noted that, except for the
first-order upwind scheme, these methods all involve higher-order advection
operators, i.e. they involve more than just the neighboring grid points. These
methods are more difficult to deal with on unstructured meshes and many
current implementations use extrapolation outside the control volume (e.g.
Jessee and Fiveland [15]). The effect of this extrapolation on the resulting
accuracy may be a concern and could could be assessed using the methods
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outlined in this report.
In terms of numerical performance for pure diffusion problems, the CVFEM

scheme introduces minimal error and anisotropy in two dimensions. In con-
trast, the stabilized schemes, FEM-SUPG and CVFEM-SUCV, may be op-
timized for phase and group accuracy, but when tuned for phase accuracy,
they do not perform well in terms of the discrete diffusivity, which exhibits
significant anisotropic behavior. This reinforces the notion that there is no
single best method that spans all problem classes.
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Conclusions

The results of this first step in a multi-methods comparison lead us to con-
clude that:

• There is no single best method, but there are a number of competing
methods that are of second-order accuracy or better and that should
perform adequately in the hands of an experienced analyst. However,
the grid resolution requirements to attain a certain level of error can
be vastly different.

• A single numerical method that can optimally solve all problem classes
with equivalent accuracy and robustness does not exist in the set of
methods considered, but the selection of an optimal numerical method
must still be made based on the problem to be solved. The results
presented here will hopefully provide some guidance in the selection
process.

• The spatial coupling of time-derivatives yields super-convergent phase
and group accuracy for the finite element methods, and as a general
rule improves the phase and group accuracy of the CVFEM methods,
albeit without the super-convergent behavior.

• The 2-D dispersive properties of many of the methods may be char-
acterized by a simple generalization relative to the corresponding 1-D
behavior.

• At the hyperbolic limit, the accurate propagation of a signal depends on
providing adequate resolution for all wavelengths present in the signals.
Dispersive errors will occur for all of the methods considered here.

• Although not often discussed, accurate modeling of diffusion also re-
quires providing adequate resolution for all wavelengths present in the
signals. Many methods exhibit reduced apparent diffusivities for short-
wavelength signals, i.e., near the grid Nyquist limit.

• The artificial viscosity, in general, damps the under-resolved parts of
a signal – the specific spectral characteristics have been shown to be a
function of the method. All of the higher-order methods tend to intro-
duce minimal artificial diffusivity through the mid-range of the discrete
spectrum with a peak occurring just before the Nyquist limit for the
grid. This behavior may be optimized to deliver specific band-pass
properties that match the dispersive properties of the method. How-
ever, to our knowledge, this type of matching has not been performed.
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Future Directions

The work presented here constitutes a first step in a multi-methods compar-
ison intended to identify the relative strengths and weaknesses of multiple
numerical methods in the context of advective-diffusive processes. The focus
for this work has been on characterizing the numerical artifacts associated
with spatial discretization in a spectral sense. There are, of course, other
numerical methods, and analysis techniques that can be applied to a multi-
methods comparison. From our perspective the logical next steps in this
work should proceed as follows.

1. Extend the analysis techniques presented here to treat non-linear ad-
vection methods. This step should consider the very important total-
variation diminishing (TVD) properties of non-linear methods and the
concomitant introduction of an artificial diffusivity that varies in space
and time. Initial efforts in this direction suggest that it is possible to
bound the the phase and group speed, discrete diffusivity, and artificial
diffusivity in terms of flux limiters and their operating range.

2. Extend the analysis presented here to consider the fully-discrete sit-
uation for a range of time-integration methods. Gresho and Sani[12]
(see section 2.7.6) present a prototypical study of fully-discrete meth-
ods, albeit a subset of the methods considered here. In addition to
characterizing the fully-discrete dispersive errors, consideration of the
algorithmic damping associated with time-integration schemes should
be considered in conjunction with the artificial diffusivity associated
with the spatial discretization. As with this work, a Fourier analysis
would provide the means for placing all methods on a relatively equal
footing.

3. A carefully designed suite of computational experiments should be as-
sembled and used to assess specific methods selected based on the out-
come of steps 1 and 2. This phase of the effort would focus on the
development of an archival database of results that would be accessible
via the world-wide web. This idea is not new, and a good prototype
for this may be found in the work reported by Baptista, et al. [3]. It
is anticipated that this phase of the effort could draw on results pro-
vided by a large number of researchers with appropriate quality-control
measures for submitted results.
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Appendix A

Operator Stencils

The semi-discrete equations for each of the methods considered in this work
are presented here with the advection operators decomposed into symmet-
ric and skew-symmetric components where appropriate. Each of the semi-
discrete equations is presented in a stencil form based on the grid layout
shown in Figure 2.2.
The generic form for the semi-discrete equations is

MṪ +Ax(u)T +Ay(v)T +KT = 0. (A.1)

For each operator in the semi-discrete equation, the ‘stencil’ entries multiply
their respective (m,n) field variables, e.g., for a generic operator A,

A =

(m-2,n+2) (m-1,n+2) (m,n+2) (m+1,n+2) (m+2,n+2)
(m-2,n+1) (m-1,n+1) (m,n+1) (m+1,n+1) (m+2,n+1)
(m-2,n) (m-1,n) (m,n) (m+1,n) (m+2,n)
(m-2,n-1) (m-1,n-1) (m,n-1) (m+1,n-1) (m+2,n-1)
(m-2,n-2) (m-1,n-2) (m,n-2) (m+1,n-2) (m+2,n-2)

.

(A.2)

A.1 First-Order Upwind (FOU)

∆x∆y
0 0 0
0 1 0
0 0 0

Ṫ + u∆y
0 0 0
-1 1 0
0 0 0

T + v∆x
0 0 0
0 1 0
0 -1 0

T

+α

0 ∆x
∆y

0
∆y
∆x

-2 ( ∆y
∆x
+ ∆x

∆y
) ∆y

∆x

0 ∆x
∆y

0

T = 0. (A.3)
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This equation represents the stencil for the FOU method in the form pre-
sented in Eq. (A.2). The first term represents the discrete mass matrix
operator, the next two terms are the x− and y-components of the advection
operator, and the last term is the stencil for the discrete representation of
diffusion. It is illustrative to decompose the advection operator into sym-
metric and skew-symmetric operators; the former represents the artificial
diffusivity in the method. The symmetric and skew-symmetric portions of
the first-order upwind advection operator are,

Ax = u∆y
0 0 0
-1/2 1 -1/2
0 0 0

+ u∆y
0 0 0
-1/2 0 1/2
0 0 0

(A.4)

for the x-coordinate operator, and,

Ay = v∆x
0 -1/2 0
0 1 0
0 -1/2 0

+ v∆x
0 1/2 0
0 0 0
0 -1/2 0

(A.5)

for the y-coordinate operator. Clearly, the first stencil on the RHS of each
component equation is the symmetric contribution, and if the two symmetric
components are summed with the diffusion operator, the result is the classical
expression for artificial diffusivity for the first-order upwind scheme, with the
form αart,x ∼ u∆x and αart,y ∼ v∆y.

A.2 Second-Order Central Difference (CD)

∆x∆y
0 0 0
0 1 0
0 0 0

Ṫ + u∆y
0 0 0
-1/2 0 1/2
0 0 0

T + v∆x
0 1/2 0
0 0 0
0 -1/2 0

T

+α

0 ∆x
∆y

0
∆y
∆x

-2 ( ∆y
∆x
+ ∆x

∆y
) ∆y

∆x

0 ∆x
∆y

0

T = 0. (A.6)

The components of the skew-symmetric advective operator are the second
and third terms. There is no symmetric portion to this advective operator
and hence no artificial diffusion in this method.
We also consider an ad hoc version of this scheme, referred to as a centered

difference method with consistent mass (CD-Mc), in which the lumped mass
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term in the foregoing equation is replaced with the consistent mass matrix
from CVFEM:

∆x∆y

64

1 6 1
6 36 6
1 6 1

Ṫ (A.7)

This scheme is ad-hoc because the spatial representation of the time deriva-
tive term is different from that for the advective and diffusive terms in order
to arrive at this form.

A.3 Second-Order Upwind (SOU)

∆x∆y MLM Ṫ +
u∆y

2

0 0 0 0 0
0 0 0 0 0
1 -4 3 0 0
0 0 0 0 0
0 0 0 0 0

T +
v∆x

2

0 0 0 0 0
0 0 0 0 0
0 0 3 0 0
0 0 -4 0 0
0 0 1 0 0

T

+ αKCD T = 0, (A.8)

where MLM is the lumped mass operator,

0 0 0
0 1 0
0 0 0

(A.9)

andKCD denotes the 5-pt central difference stencil for the diffusion operator,
given by the last operator in the FOU stencil, Eq. (A.3). The symmetric
and skew-symmetric portions of the second-order upwind advection operator
are,

Ax =
u∆y

2

0 0 0 0 0
0 0 0 0 0
1/2 -2 3 -2 1/2
0 0 0 0 0
0 0 0 0 0

+
u∆y

2

0 0 0 0 0
0 0 0 0 0
1/2 -2 0 2 -1/2
0 0 0 0 0
0 0 0 0 0

(A.10)

and,

Ay =
v∆x

2

0 0 1/2 0 0
0 0 -2 0 0
0 0 3 0 0
0 0 -2 0 0
0 0 1/2 0 0

+
v∆x

2

0 0 -1/2 0 0
0 0 2 0 0
0 0 0 0 0
0 0 -2 0 0
0 0 1/2 0 0

(A.11)
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for the x- and y−components, respectively.

A.4 Third-Order Upwind (TOU)

∆x∆y MLM Ṫ +
u∆y

12

0 0 0 0 0
0 0 0 0 0
2 -12 6 4 0
0 0 0 0 0
0 0 0 0 0

T +
v∆x

12

0 0 0 0 0
0 0 4 0 0
0 0 6 0 0
0 0 -12 0 0
0 0 2 0 0

T

+α KCD T = 0, (A.12)

The symmetric and skew-symmetric portions of the third-order upwind-
biased scheme are,

Ax =
u∆y

12

0 0 0 0 0
0 0 0 0 0
1 -4 6 -4 1
0 0 0 0 0
0 0 0 0 0

+
u∆y

12

0 0 0 0 0
0 0 0 0 0
1 -8 0 8 -1
0 0 0 0 0
0 0 0 0 0

(A.13)

and,

Ay =
v∆x

12

0 0 1 0 0
0 0 -4 0 0
0 0 6 0 0
0 0 -4 0 0
0 0 1 0 0

+
v∆x

12

0 0 -1 0 0
0 0 8 0 0
0 0 0 0 0
0 0 -8 0 0
0 0 1 0 0

(A.14)

for the x- and y−components, respectively.

A.5 Fromm’s Method

∆x∆y MLM Ṫ +
u∆y

4

0 0 0 0 0
0 0 0 0 0
1 -5 3 1 0
0 0 0 0 0
0 0 0 0 0

T +
v∆x

4

0 0 0 0 0
0 0 1 0 0
0 0 3 0 0
0 0 -5 0 0
0 0 1 0 0

T

+α KCD T = 0, (A.15)
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The symmetric and skew-symmetric portions of the advection operator in
the Fromm upwind-biased scheme are,

Ax =
u∆y

4

0 0 0 0 0
0 0 0 0 0
1/2 -2 3 -2 1/2
0 0 0 0 0
0 0 0 0 0

+
u∆y

4

0 0 0 0 0
0 0 0 0 0
1/2 -3 0 3 -1/2
0 0 0 0 0
0 0 0 0 0

(A.16)

and,

Ay =
v∆x

4

0 0 1/2 0 0
0 0 -2 0 0
0 0 3 0 0
0 0 -2 0 0
0 0 1/2 0 0

+
cy∆x

4

0 0 -1/2 0 0
0 0 3 0 0
0 0 0 0 0
0 0 -3 0 0
0 0 1/2 0 0

(A.17)

for the x- and y−components, respectively.

A.6 QUICK

∆x∆y MLM Ṫ +
u∆y

8

0 0 0 0 0
0 0 0 0 0
1 -7 3 3 0
0 0 0 0 0
0 0 0 0 0

T +
v∆x

8

0 0 0 0 0
0 0 3 0 0
0 0 3 0 0
0 0 -7 0 0
0 0 1 0 0

T

+α KCD T = 0, (A.18)

The symmetric and skew-symmetric portions of the advection operator in
the QUICK scheme are,

Ax =
u∆y

8

0 0 0 0 0
0 0 0 0 0
1/2 -2 3 -2 1/2
0 0 0 0 0
0 0 0 0 0

+
u∆y

8

0 0 0 0 0
0 0 0 0 0
1/2 -5 0 5 -1/2
0 0 0 0 0
0 0 0 0 0

(A.19)
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and,

Ay =
v∆x

8

0 0 1/2 0 0
0 0 -2 0 0
0 0 3 0 0
0 0 -2 0 0
0 0 1/2 0 0

+
v∆x

8

0 0 -1/2 0 0
0 0 5 0 0
0 0 0 0 0
0 0 -5 0 0
0 0 1/2 0 0

(A.20)

for the x- and y−components, respectively.

A.7 Node Centered Finite Volume with Least

Squares Gradient Reconstruction (LSR)

Two methods that result from applying an unweighted least squares gradient
reconstruction scheme were introduced in Section (2.3). The stencil for the
LSR(-1) (φ = 1 and κ = −1) is given by,

∆x∆y MLM Ṫ+
u∆y

6

0 0 0 0 0
1 -1 -1 1 0
1 -10 11 -2 0
1 -1 -1 1 0
0 0 0 0 0

T+
v∆x

6

0 0 0 0 0
0 1 -2 1 0
0 -1 11 -1 0
0 -1 -10 -1 0
0 1 1 1 0

T

+α KCD T = 0 . (A.21)

The symmetric and skew-symmetric portions of the LSR(-1) scheme are,

Ax =
u∆y

6

0 0 0 0 0
1/2 0 -1 0 1/2
1/2 -6 11 -6 1/2
1/2 0 -1 0 1/2
0 0 0 0 0

+
u∆y

6

0 0 0 0 0
1/2 -1 0 1 -1/2
1/2 -4 0 4 -1/2
1/2 -1 0 1 -1/2
0 0 0 0 0

(A.22)

and,

Ay =
v∆x

6

0 1/2 1/2 1/2 0
0 0 -6 0 0
0 -1 11 -1 0
0 0 -6 0 0
0 1/2 1/2 1/2 0

+
v∆x

6

0 -1/2 -1/2 -1/2 0
0 1 4 1 0
0 0 0 0 0
0 -1 -4 -1 0
0 1/2 1/2 1/2 0

. (A.23)
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The stencil for the LSR(0) (φ = 1 and κ = 0)scheme is given by,

∆x∆y MLM Ṫ+
u∆y

12

0 0 0 0 0
1 -1 -1 1 0
1 -13 11 1 0
1 -1 -1 1 0
0 0 0 0 0

T+
v∆x

12

0 0 0 0 0
0 1 1 1 0
0 -1 11 -1 0
0 -1 -13 -1 0
0 1 1 1 0

T

+α KCD T = 0 . (A.24)

The symmetric and skew-symmetric portions of the LSR(0) scheme are,

Ax =
u∆y

12

0 0 0 0 0
1/2 0 -1 0 1/2
1/2 -6 11 -6 1/2
1/2 0 -1 0 1/2
0 0 0 0 0

+
u∆y

12

0 0 0 0 0
1/2 -1 0 1 -1/2
1/2 -7 0 7 -1/2
1/2 -1 0 1 -1/2
0 0 0 0 0

(A.25)

and,

Ay =
v∆x

12

0 1/2 1/2 1/2 0
0 0 -6 0 0
0 -1 11 -1 0
0 0 -6 0 0
0 1/2 1/2 1/2 0

+
v∆x

12

0 -1/2 -1/2 -1/2 0
0 1 7 1 0
0 0 0 0 0
0 -1 -7 -1 0
0 1/2 1/2 1/2 0

(A.26)

A.8 Galerkin Finite Element Method (FEM)

The full stencil for the Galerkin Finite Element Method (FEM) reads:

∆x∆y

36

1 4 1
4 16 4
1 4 1

Ṫ +
u∆y

12

−1 0 1
−4 0 4
−1 0 1

T +
v∆x

12

1 4 1
0 0 0
−1 −4 −1

T

=
α

6

∆y
∆x
+ ∆x

∆y
4∆x
∆y
− 2∆y

∆x
∆y
∆x
+ ∆x

∆y

4∆y
∆x
− 2∆x

∆y
−8

(

∆y
∆x
+ ∆x

∆y

)

4∆y
∆x
− 2∆x

∆y
∆y
∆x
+ ∆x

∆y
4∆x
∆y
− 2∆y

∆x
∆y
∆x
+ ∆x

∆y

T (A.27)

The components of the skew-symmetric portion of the advective operator are
the second and third terms; there is no symmetric portion to this operator.
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A.9 Finite Element Method with SUPG (FEM-

SUPG)

The stencil for the Stream-Line Upwind Petrov-Galerkin (SUPG) method
contains a modified mass matrix and an artificial diffusion term,

∆x∆y

36

1 4 1
4 16 4
1 4 1

Ṫ + τ
u∆y

12

1 0 −1
4 0 −4
1 0 −1

Ṫ + τ
v∆x

12

−1 −4 −1
0 0 0
1 4 1

Ṫ

+
u∆y

12

−1 0 1
−4 0 4
−1 0 1

T +
v∆x

12

1 4 1
0 0 0
−1 −4 −1

T

− τ

6

u2 ∆y
∆x
− 3uv + v2 ∆x

∆y
4v2 ∆x

∆y
− 2u2 ∆y

∆x
u2 ∆y

∆x
+ 3uv + v2 ∆x

∆y

4u2 ∆y
∆x
− 2v2 ∆x

∆y
−8

(

u2 ∆y
∆x
+ v2 ∆x

∆y

)

4u2 ∆y
∆x
− 2v2 ∆x

∆y

u2 ∆y
∆x
+ 3uv + v2 ∆x

∆y
4v2 ∆x

∆y
− 2u2 ∆y

∆x
u2 ∆y

∆x
− 3uv + v2 ∆x

∆y

T

=
α

6

∆y
∆x
+ ∆x

∆y
4∆x
∆y
− 2∆y

∆x
∆y
∆x
+ ∆x

∆y

4∆y
∆x
− 2∆x

∆y
−8

(

∆y
∆x
+ ∆x

∆y

)

4∆y
∆x
− 2∆x

∆y
∆y
∆x
+ ∆x

∆y
4∆x
∆y
− 2∆y

∆x
∆y
∆x
+ ∆x

∆y

T (A.28)

where the two-dimensional version of the stability parameter ([5]) is

τ = β
(

u∆x+ v∆y

u2 + v2

)

(A.29)

for large Pe. The β coefficient can be chosen to optimize the method with re-
spect to its dispersive characteristics. The components of the skew-symmetric
portions of the advective operator are given by the 4th and 5th terms, while
the symmetric portion is the 6th term, which can also be written as:

−1
6





u2
∆y

∆x

1 −2 1
4 −8 4
1 −2 1

+ 3uv
−1 0 1
0 0 0
1 0 −1

+ v2
∆x

∆y

1 4 1
−2 −8 −2
1 4 1







showing that the symmetric portion of the advective operator induced by
SUPG contains a cross term and therefore cannot be resolved into x- and
y-components as in the FVMs.
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A.10 Control Volume Finite Element Method

(CVFEM)

The stencil for the Control Volume Finite Element Method reads:

∆x∆y

64

1 6 1
6 36 6
1 6 1

Ṫ +
u∆y

16

−1 0 1
−6 0 6
−1 0 1

T +
v∆x

16

1 6 1
0 0 0
−1 −6 −1

T

=
α

8

∆y
∆x
+ ∆x

∆y
6∆x
∆y
− 2∆y

∆x
∆y
∆x
+ ∆x

∆y

6∆y
∆x
− 2∆x

∆y
−12

(

∆y
∆x
+ ∆x

∆y

)

6∆y
∆x
− 2∆x

∆y
∆y
∆x
+ ∆x

∆y
6∆x
∆y
− 2∆y

∆x
∆y
∆x
+ ∆x

∆y

T (A.30)

The advective operator contains only skew-symmetric components, given by
the 2nd and 3rd terms in the equation.

A.11 Control-Volume Finite Element Method

with SUCV (CVFEM-SUCV)

The Stream-Line Upwind Control Volume (SUCV) method results in a scheme
similar to SUPG:

∆x∆y

64

1 6 1
6 36 6
1 6 1

Ṫ + τ
u∆y

16

1 0 −1
6 0 −6
1 0 −1

Ṫ + τ
v∆x

16

−1 −6 −1
0 0 0
1 6 1

Ṫ

+
u∆y

16

−1 0 1
−6 0 6
−1 0 1

T +
v∆x

16

1 6 1
0 0 0
−1 −6 −1

T

−τ
8

u2 ∆y
∆x
− 4uv + v2 ∆x

∆y
6v2 ∆x

∆y
− 2u2 ∆y

∆x
u2 ∆y

∆x
+ 4uv + v2 ∆x

∆y

6u2 ∆y
∆x
− 2v2 ∆x

∆y
−12

(

u2 ∆y
∆x
+ v2 ∆x

∆y

)

6u2 ∆y
∆x
− 2v2 ∆x

∆y

u2 ∆y
∆x
+ 4uv + v2 ∆x

∆y
6v2 ∆x

∆y
− 2u2 ∆y

∆x
u2 ∆y

∆x
− 4uv + v2 ∆x

∆y

T

=
α

8

∆y
∆x
+ ∆x

∆y
6∆x
∆y
− 2∆y

∆x
∆y
∆x
+ ∆x

∆y

6∆y
∆x
− 2∆x

∆y
−12

(

∆y
∆x
+ ∆x

∆y

)

6∆y
∆x
− 2∆x

∆y
∆y
∆x
+ ∆x

∆y
6∆x
∆y
− 2∆y

∆x
∆y
∆x
+ ∆x

∆y

T (A.31)

The skew-symmetric part of the advective operator remains the same as in
CVFEM, while the symmetric portion, giving rise to artificial diffusion, is
given by the 6th term in the foregoing formula. Similar to FEM, this term
can be separated into three pieces, except the 4-8-4 columns and rows of
SUPG go the 6-12-6, (with the same signs) in the SUCV.
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